【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為“未達(dá)標(biāo)”,分?jǐn)?shù)不低于87分的為“達(dá)標(biāo)”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1人“達(dá)標(biāo)”的概率.
【答案】(1)86,80.5;(2).
【解析】
(1)找出莖葉圖中出現(xiàn)次數(shù)最多的數(shù)為眾數(shù),根據(jù)平均數(shù)公式,即可求得平均數(shù);
(2)在被抽取的學(xué)生中,有2個(gè)“達(dá)標(biāo)”學(xué)生,4個(gè)“未達(dá)標(biāo)”學(xué)生,按達(dá)標(biāo)和不達(dá)標(biāo)兩類編號(hào),列出從6人中任取2人的所有情況,統(tǒng)計(jì)出滿足條件的基本事件的個(gè)數(shù),根據(jù)古典概型的概率公式,即可求解.
(1)這組數(shù)據(jù)的眾數(shù)為86;
平均數(shù)為.
(2)在被抽取的學(xué)生中,有2個(gè)“達(dá)標(biāo)”學(xué)生,4個(gè)“未達(dá)標(biāo)”學(xué)生,
將“達(dá)標(biāo)”學(xué)生編號(hào)為,,“未達(dá)標(biāo)”學(xué)生編號(hào)為,,,,
則從6人中任取2人,有以下情況:
,,,,,,,,
,,,,,,.共15種.
其中符合條件的為,,,,,,
,,,共9種.
故至少有1人“達(dá)標(biāo)”的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求 的單調(diào)區(qū)間;
(2)若曲線 與直線只有一個(gè)交點(diǎn), 求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了紀(jì)念“一帶一路”倡議提出五周年,某城市舉辦了一場(chǎng)知識(shí)競(jìng)賽,為了了解市民對(duì)“一帶一路”知識(shí)的掌握情況,從回收的有效答卷中按青年組和老年組各隨機(jī)抽取了40份答卷,發(fā)現(xiàn)成績(jī)都在內(nèi),現(xiàn)將成績(jī)按區(qū)間,,,,進(jìn)行分組,繪制成如下的頻率分布直方圖.
青年組
中老年組
(1)利用直方圖估計(jì)青年組的中位數(shù)和老年組的平均數(shù);
(2)從青年組,的分?jǐn)?shù)段中,按分層抽樣的方法隨機(jī)抽取5份答卷,再?gòu)闹羞x出3份答卷對(duì)應(yīng)的市民參加政府組織的座談會(huì),求選出的3位市民中有2位來自分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知菱形的對(duì)角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.
(Ⅰ)證明:平面 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,N為CD的中點(diǎn),M是AC上一點(diǎn).
(1)若M為AC的中點(diǎn),求證:AD//平面BMN;
(2)若,平面平面BCD,,求直線AC與平面BMN所成的角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com