【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)證明不等式Sn+1≤4Sn , 對(duì)任意n∈N*皆成立.

【答案】
(1)證明:由題設(shè)an+1=4an﹣3n+1,得an+1﹣(n+1)=4(an﹣n),n∈N*

又a1﹣1=1,所以數(shù)列{an﹣n}是首項(xiàng)為1,且公比為4的等比數(shù)列.


(2)解:由(1)可知an﹣n=4n1,于是數(shù)列{an}的通項(xiàng)公式為an=4n1+n.

所以數(shù)列{an}的前n項(xiàng)和


(3)證明:對(duì)任意的n∈N* =

所以不等式Sn+1≤4Sn,對(duì)任意n∈N*皆成立.


【解析】(1)整理題設(shè)an+1=4an﹣3n+1得an+1﹣(n+1)=4(an﹣n),進(jìn)而可推斷數(shù)列{an﹣n}是等比數(shù)列.(2)由(1)可數(shù)列{an﹣n}的通項(xiàng)公式,進(jìn)而可得{an}的通項(xiàng)公式根據(jù)等比和等差數(shù)列的求和公式,求得Sn . (3)把(2)中求得的Sn代入Sn+1﹣4Sn整理后根據(jù) 證明原式.
【考點(diǎn)精析】利用等比關(guān)系的確定和數(shù)列的前n項(xiàng)和對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,則四個(gè)數(shù)的大小關(guān)系是(
A.a<c<b<d
B.c<d<a<b
C.b<d<c<a
D.d<b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1 500,2 000)(元)月收入段應(yīng)抽出( )人.

A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義:在數(shù)列{an}中,若a ﹣a =p(n≥2,n∈N* , p為常數(shù)),則稱(chēng)數(shù)列{an}為等方差數(shù)列,下列判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{an2}是等差數(shù)列;
②{(﹣1)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N* , k為常數(shù))不可能還是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列.
其中正確的結(jié)論是 . (寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , 中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在棱上是否存在點(diǎn),使 ? 若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)內(nèi),某知名連接店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過(guò)10天的概率;

(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球2個(gè).從袋子中不放回地隨機(jī)抽取小球兩個(gè),每次抽取一個(gè)球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.

(1)記事件表示“”,求事件的概率;

(2)在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù).

(1)任取,記“關(guān)于的方程有一個(gè)大于1的根和一個(gè)小于1的根”為事件,求發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案