【題目】定義在上的函數(shù),如果存在函數(shù)(為常數(shù)),使得對一切實數(shù)都成立,則稱為函數(shù)的一個承托函數(shù),給出如下命題:
①函數(shù)是函數(shù)的一個承托函數(shù);
②函數(shù)是函數(shù)的一個承托函數(shù);
③若函數(shù)是函數(shù)的一個承托函數(shù),則的取值范圍是;
④值域是的函數(shù)不存在承托函數(shù).
其中正確的命題的個數(shù)為__________.
【答案】2
【解析】解:
①,∵x>0時,f(x)=lnx∈(∞,+∞),
∴不能使得f(x)g(x)=2對一切實數(shù)x都成立,故①錯誤;
②,令t(x)=f(x)g(x),則t(x)=x+sinx(x1)=sinx+10恒成立,故函數(shù)g(x)=x1是函數(shù)f(x)=x+sinx的一個承托函數(shù),②正確;
③,令h(x)=exax,則h′(x)=exa,
由題意,a=0時,結論成立;
a≠0時,令h′(x)=exa=0,則x=lna,
∴函數(shù)h(x)在(∞,lna)上為減函數(shù),在(lna,+∞)上為增函數(shù),
∴x=lna時,函數(shù)取得最小值aalna;
∵g(x)=ax是函數(shù)f(x)=ex的一個承托函數(shù),
∴aalna0,
∴lna1,
∴0<ae,
綜上,0ae,故③正確;
④,不妨令f(x)=2x,g(x)=2x1,則f(x)g(x)=10恒成立,故g(x)=2x1是f(x)=2x的一個承托函數(shù),④錯誤;
綜上所述,所有正確命題的序號是②③。
正確的命題的個數(shù)為2.
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,定直線: ,動圓過點,且與直線相切.
(Ⅰ)求動圓的圓心軌跡的方程;
(Ⅱ)過點的直線與曲線相交于, 兩點,分別過點, 作曲線的切線, ,兩條切線相交于點,求外接圓面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2016年下半年起六安市區(qū)商品房價不斷上漲,為了調查研究六安城區(qū)居民對六安商品房價格承受情況,寒假期間小明在六安市區(qū)不同小區(qū)分別對50戶居民家庭進行了抽查,并統(tǒng)計出這50戶家庭對商品房的承受價格(單位:元/平方),將收集的數(shù)據分成, , , , 五組(單位:元/平方),并作出頻率分布直方圖如圖:
(Ⅰ)試根據頻率分布直方圖估計出這50戶家庭對商品房的承受價格平均值(單位:元/平方);
(Ⅱ)為了作進一步調查研究,小明準備從承受能力超過4000元/平方的居民中隨機抽出2戶進行再調查,設抽出承受能力超過8000元/平方的居民為戶,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,a,b,c分別是△ABC三個內角A,B,C的對邊,下列四個命題:
①若tanA+tanB+tanC>0,則△ABC是銳角三角形
②若acoA=bcosB,則△ABC是等腰三角形
③若bcosC+ccosB=b,則△ABC是等腰三角形
④若 = ,則△ABC是等邊三角形
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓關于直線對稱,圓心在第二象限,半徑為.
(Ⅰ)求圓的方程.
(Ⅱ)是否存在直線與圓相切,且在軸、軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,a,b,c分別是角A,B,C的對邊,且a=80,b=100,A= ,則此三角形是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.銳角或鈍角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體ABCD﹣A′B′C′D′.
(1)設M,N分別是A′D′,A′B′的中點,試在下列三個正方體中各作出一個過正方體頂點且與平面AMN平行的平面(不用寫過程)
(2)設S是B′D′的中點,F(xiàn),G分別是DC,SC的中點,求證:直線GF∥平面BDD′B′.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據,并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據顯示, 與之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com