【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為相圓上一點(diǎn),軸交于,,.

(Ⅰ)求橢圓的方程;

(Ⅱ)過右焦點(diǎn)的直線交橢圓于、兩點(diǎn)若的中點(diǎn)為,為原點(diǎn),直線交直線于點(diǎn).的最大值.

【答案】(I);(II)

【解析】

(Ⅰ)由題意得,通過平面幾何的知識,可以得到,根據(jù),離心率為,結(jié)合,這樣可以求出,進(jìn)而求出橢圓的標(biāo)準(zhǔn)方程;

(II)直線與橢圓方程聯(lián)立,可以得到一個一元二次方程,設(shè)、,利用根與系數(shù)關(guān)系可以求出的坐標(biāo),以及的長度,求出直線的方程,求出的坐標(biāo),求出的長度表達(dá)式,求出 平方的表達(dá)式,用換元法、配方法,最后求出的最大值.

(I)連接,由題意得,所以的中位線,

又因?yàn)?/span>,所以,且

,,得,,

故所求橢圓方程為.

(II)聯(lián)立,可得.

設(shè)、,則,

所以為

所以的中點(diǎn)坐標(biāo)為,

因此直線的方程為,從而點(diǎn),

設(shè),令,則

,

因此當(dāng),即取得最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐PABC,PA⊥平面ABC,D是棱PB的中點(diǎn),已知PA=BC=2,AB=4,CBAB,則異面直線PC,AD所成角的余弦值為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村扶貧. 此幫扶單位為了了解某地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機(jī)調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:

貧困戶編號

評分

貧困戶編號

評分

貧困戶編號

評分

貧困戶編號

評分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評分?jǐn)?shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的10個樣本的均值和方差;

(3)在(2)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“級”.運(yùn)用樣本估計(jì)總體的思想,現(xiàn)從(1)中抽到的10個樣本的滿意度為“級”貧困戶中隨機(jī)地抽取2戶,求所抽到2戶的滿意度均評分均“超過80”的概率.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動直線與圓:相交于不同的兩點(diǎn),.

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線:與曲線只有一個交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對比表:

攝氏溫度

熱飲杯數(shù)

(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對于變量、,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.

(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;

(ii)記為不超過的最大整數(shù),如,.對于(i)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>與當(dāng)天熱飲每杯的銷售利潤的關(guān)系是 (單位:元),請問當(dāng)氣溫為多少時,當(dāng)天的熱飲銷售利潤總額最大?

(參考公式),,

(參考數(shù)據(jù)),, .

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)消費(fèi)者協(xié)會為了解本社區(qū)居民網(wǎng)購消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費(fèi)金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進(jìn)行了問卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購消費(fèi)金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計(jì)該社區(qū)居民最近一年來網(wǎng)購消費(fèi)金額的中位數(shù);

(2)將網(wǎng)購消費(fèi)金額在20千元以上者稱為“網(wǎng)購迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購迷與性別有關(guān)系”;

合計(jì)

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計(jì)

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨(dú)立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐P-ABC(如圖1)的展開圖如圖2,其中四邊形ABCD為邊長等于的正方形,ABEBCF均為正三角形,在三棱錐P-ABC.

1)證明:平面PAC⊥平面ABC;

2)若M,N分別是APBC的中點(diǎn),請判斷三棱錐M-BCP和三棱錐N-APC體積的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運(yùn)動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:

(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案