某選修課的考試按A級(jí)、B級(jí)依次進(jìn)行,只有當(dāng)A級(jí)成績(jī)合格時(shí),才可繼續(xù)參加B級(jí)的考試.已知每級(jí)考試允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)級(jí)別的成績(jī)均合格方可獲得該選修課的合格證書.現(xiàn)某人參加這個(gè)選修課的考試,他A級(jí)考試成績(jī)合格的概率為,B級(jí)考試合格的概率為.假設(shè)各級(jí)考試成績(jī)合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得該選修課的合格證書的概率;
(2)在這個(gè)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求的數(shù)學(xué)期望E
(1),(2).

試題分析:(1)解概率問(wèn)題,關(guān)鍵明確事件所包含的意義. 不需要補(bǔ)考就獲得合格證書的事件為A級(jí)第一次考試合格且B級(jí)第一次考試合格,因?yàn)槭录嗷オ?dú)立,所以由概率乘法得(2)參加考試的次數(shù)至少2次,至多4次,因此=2,3,4,因?yàn)椴环艞壦械目荚嚈C(jī)會(huì),所以=2包含①A級(jí)第一次考試合格且B級(jí)第一次考試合格,②A級(jí)第一次考試不合格且A級(jí)補(bǔ)考不合格。=4包含A級(jí)第一次考試不合格且A級(jí)補(bǔ)考合格, B級(jí)第一次考試不合格,B級(jí)補(bǔ)考合格或不合格. =3包含事件較多,可利用求解,最后再利用數(shù)學(xué)期望公式求E.
試題解析:設(shè)“A級(jí)第一次考試合格”為事件,“A級(jí)補(bǔ)考合格”為事件A2; “B級(jí)第一次考試合格”為事件,“B級(jí)補(bǔ)考合格”為事件
(1)不需要補(bǔ)考就獲得合格證書的事件為A1·B1,注意到A1與B1相互獨(dú)立,

答:該考生不需要補(bǔ)考就獲得合格證書的概率為         4
(2)由已知得,=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,可得
 .6

    .8

       .10

答:該考生參加考試次數(shù)的期望為 .13
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

現(xiàn)有甲、乙、丙三人參加某電視臺(tái)的應(yīng)聘節(jié)目《非你莫屬》,若甲應(yīng)聘成功的概率為,乙、丙應(yīng)聘成功的概率均為,(0<t<2),且三個(gè)人是否應(yīng)聘成功是相互獨(dú)立的.
(1)若乙、丙有且只有一個(gè)人應(yīng)聘成功的概率等于甲應(yīng)聘成功的概率,求t的值;
(2)記應(yīng)聘成功的人數(shù)為,若當(dāng)且僅當(dāng)為=2時(shí)概率最大,求E()的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,椐統(tǒng)計(jì),隨機(jī)變量的概率分布如下:

0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)表中,能表示隨機(jī)變量X的概率分布的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ和η,且ξ、η分布列為
ξ
1
2
3
P
a
0.1
0.6
 
η
1
2
3
P
0.3
b
0.3
(1)求a、b的值;
(2)計(jì)算ξ、η的期望和方差,并以此分析甲、乙的技術(shù)狀況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某人進(jìn)行射擊,每次中靶的概率均為0.8,現(xiàn)規(guī)定:若中靶就停止射擊,若沒中靶,則繼續(xù)射擊,如果只有3發(fā)子彈,則射擊數(shù)X的均值為________.(填數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè),則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知離散型隨機(jī)變量X的分布列如表,若E(X)=0,D(X)=1,則a=________,b=________.
X
-1
0
1
2
P
a
b
c

查看答案和解析>>

同步練習(xí)冊(cè)答案