【題目】已知正項數(shù)列{an}的前n項和Sn滿足2Sn=an+2﹣2,n∈N*.
(1)若數(shù)列{an}為等比數(shù)列,求數(shù)列{an}的公比q的值.
(2)若a2=a1=1,bn=an+an+1,求數(shù)列{bn}的通項公式.
【答案】(1)q=2(2)
【解析】
(1)由數(shù)列為等比數(shù)列,再由,可得到等比數(shù)列的公比;
(2)由題意可得,再利用,可得數(shù)列為等比數(shù)列,進(jìn)而可得通項公式.
(1)根據(jù)題意,數(shù)列{an}滿足2Sn=an+2﹣2,①,
則有2Sn﹣1=an+1﹣2,②
①﹣②可得:2an=an+2﹣an+1,
又由數(shù)列{an}為等比數(shù)列,則有2=q2﹣q,
解可得:q=2或﹣1,
又由q>0,則q=2;
(2)數(shù)列{an}滿足2Sn=an+2﹣2,
當(dāng)n=1時,有a3=2S1+2=4,
當(dāng)n≥2時,由(1)的結(jié)論,2an=an+2﹣an+1,變形可得:2(an+1+an)=an+2+an+1,
即2bn=bn+1,
又由b1=a1+a2=2,
b2=a2+a3=1+4=5.
∴數(shù)列{bn}從第二項起是以5為首項,2為公比的等比數(shù)列.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計,得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
18 | |||
合計 |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.
(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.
①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元。若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?
②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進(jìn)行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機商家為了更好地制定手機銷售策略,隨機對顧客進(jìn)行了一次更換手機時間間隔的調(diào)查.從更換手機的時間間隔不少于3個月且不超過24個月的顧客中選取350名作為調(diào)查對象,其中男性顧客和女性顧客的比為,商家認(rèn)為一年以內(nèi)(含一年)更換手機為頻繁更換手機,否則視為未頻繁更換手機.現(xiàn)按照性別采用分層抽樣的方法從中抽取105人,并按性別分為兩組,得到如下表所示的頻數(shù)分布表:
事件間隔(月) | |||||||
男性 | x | 8 | 9 | 18 | 12 | 8 | 4 |
女性 | y | 2 | 5 | 13 | 11 | 7 | 2 |
(1)計算表格中x,y的值;
(2)若以頻率作為概率,從已抽取的105且更換手機時間間隔為3至6個月(含3個月和6個月)的顧客中,隨機抽取2人,求這2人均為男性的概率;
(3)請根據(jù)頻率分布表填寫列聯(lián)表,并判斷是否有以上的把握認(rèn)為“頻繁更換手機與性別有關(guān)”.
頻繁更換手機 | 未頻繁更換手機 | 合計 | |
男性顧客 | |||
女性顧客 | |||
合計 |
附表及公式:
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中,為自然對數(shù)的底數(shù).
(1)求函數(shù)的最小值;
(2)若對于任意的,都存在唯一的,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點A是直線上的動點,過作直線,,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點,是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與直線垂直,求的極值;
(2)若函數(shù)的圖象恒在直線的下方.
①求實數(shù)的取值范圍;
②求證:對任意正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐代詩人李欣的是古從軍行開頭兩句說“百日登山望烽火,黃昏飲馬傍交河”詩中隱含著一個有缺的數(shù)學(xué)故事“將軍飲馬”的問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在區(qū)域為,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達(dá)軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com