在二項(xiàng)式(x-
1
x
n的展開式中恰好第5項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中含x2項(xiàng)的系數(shù)是( 。
A、-56B、-35
C、35D、56
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:先求出n,在展開式的通項(xiàng)公式,令x的指數(shù)為2,即可得出結(jié)論.
解答: 解:∵在二項(xiàng)式(x-
1
x
n的展開式中恰好第5項(xiàng)的二項(xiàng)式系數(shù)最大,
∴n=8,
展開式的通項(xiàng)公式為Tr+1=
C
r
8
x8-r•(-
1
x
)r
=
C
r
8
•(-1)r•x8-2r
令8-2r=2,則r=3,∴展開式中含x2項(xiàng)的系數(shù)是-
C
3
8
=-56.
故選:A.
點(diǎn)評(píng):本題考查二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則|1-2i|=( 。
A、1
B、2
C、-2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-6x+5≤0}和B={y|y=2x+2},則A∩B(  )
A、ϕB、[1,2)
C、[1,5]D、(2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
0≤2x+y≤6
0≤x-2y≤3
在坐標(biāo)平面內(nèi)表示的圖形的面積等于(  )
A、
9
5
B、
18
5
C、
36
5
D、
18
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=f(x),x∈R“y=f(x)為奇函數(shù)”是“函數(shù)y=|f(x)|的圖象關(guān)于y軸對(duì)稱”是的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),過橢圓C的右焦點(diǎn)F的直線l交橢圓于A,B兩點(diǎn),交y軸于P點(diǎn),設(shè)
PA
=m
AF
,
PB
=n
BF
,(m,n∈R).已知橢圓C上的點(diǎn)到焦點(diǎn)F的最大值與最小值的比值為3+2
2

(1)求橢圓的離心率;
(2)求證:m+n為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)上一個(gè)縱坐標(biāo)為2的點(diǎn)到焦點(diǎn)F的距離為3. 
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)P(0,2),過P作直線l1,l2分別交拋物線于點(diǎn)A,B和點(diǎn)M,N,直線l1,l2的斜率分別為k1和k2,且k1k2=-
3
4
.寫出線段AB的長|AB|關(guān)于k1的函數(shù)表達(dá)式,并求四邊形AMBN面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,π<α<
2
,
(1)求cosα的值     
(2)求sin(
π
2
+α)+sin(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于80小于90為二等品,小于80為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利30元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) [70,75) [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
現(xiàn)將根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算新工人乙生產(chǎn)三件產(chǎn)品A,給工廠帶來盈利大于或等于100元的概率;
(2)記甲乙分別生產(chǎn)一件產(chǎn)品A給工廠帶來的盈利和記為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案