直線2x-y+1=0的傾斜角為θ,則
1
sin2θ-2cos2θ
的值為
 
考點:直線的傾斜角
專題:直線與圓
分析:由直線的傾斜角和斜率的關系可得tanθ=2,要求的式子可化為
tan2θ+1
tan2θ-2
,代入計算可得.
解答: 解:∵直線2x-y+1=0的傾斜角為θ,
∴tanθ=2,
1
sin2θ-2cos2θ
=
sin2θ+cos2θ
sin2θ-2cos2θ

=
tan2θ+1
tan2θ-2
=
4+1
4-2
=
5
2

故答案為:
5
2
點評:本題考查直線的傾斜角和斜率,涉及三角函數(shù)的公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx(x>0),g(x)=x(x>0).
(Ⅰ)當x∈(0,
π
2
)
時,求證:f(x)<g(x);
(Ⅱ)求證:g(x)-f(x)<
1
6
x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了宣傳“低碳生活”,來自三個不同生活小區(qū)的3名志愿者利用周末休息時間到這三個小區(qū)進行演講,每個志愿者隨機地選擇去一個生活小區(qū),且每個生活小區(qū)只去一個人.
(1)求甲恰好去自己所生活小區(qū)宣傳的概率;
(2)求3人都沒有去自己所生活的小區(qū)宣傳的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a為實數(shù),函數(shù)f(x)=x2e-x+2a,x∈R.
(Ⅰ)求f(x)的極值;
(Ⅱ)當x>0時,恒有aex>x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

式子log3
427
3
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,準線與x軸交于點M,過M點斜率為k的直線l與拋物線C交于第一象限內的A,B兩點,若|AM|=
5
4
|AF|,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正項等比數(shù)列{an}中,存在兩項am,an使得
aman
=4a1,且a6=a5+2a4,則
1
m
+
4
n
最小值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差d>0,若a1+a2+…+a2015=2015am(m∈N+),則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x||x-4|+|x-1|<5},N={x|a<x<6},且M∩N=(2,b),則a+b=
 

查看答案和解析>>

同步練習冊答案