【題目】“工資條里顯紅利,個(gè)稅新政人民心”,隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱(chēng)個(gè)稅)改革迎來(lái)了全面實(shí)施的階段,某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲~35歲(2009年~2018年)之間各月的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個(gè)稅新政下的專(zhuān)項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳交的個(gè)人所得稅.
附注:
參考數(shù)據(jù),,,,,,,其中;取,
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,
新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
稅繳級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅) =收入-個(gè)稅起征點(diǎn) | 稅率 (%) | 每月應(yīng)納稅所得額(含稅) =收入一個(gè)稅起征點(diǎn)-專(zhuān)項(xiàng)附加扣除 | 稅率 (%) |
1 | 不超過(guò)1500元的部分 | 3 | 不超過(guò)3000元的部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 超過(guò)12000元至25000元的部分 | 20 |
4 | 超過(guò)9000元至35000元的部分 | 25 | 超過(guò)25000元至35000元的部分 | 25 |
5 | 超過(guò)35000元155000元的部分 | 30 | 超過(guò)35000元至55000元的部分 | 30 |
【答案】(1);(2)2130元.
【解析】
(1)由題意,令,根據(jù)最小二乘法的計(jì)算公式,分別求得的值,即可得到回歸直線(xiàn)的方程;
(2)由(1)得該IT從業(yè)人員36歲時(shí)月平均收入,再利用表格中的數(shù)據(jù)和個(gè)稅的計(jì)算方法,求得新舊個(gè)稅政策下繳交的個(gè)人所得稅,即可得到答案.
(1)由題意,令,則
由最小二乘法的公式,可得,
又由,
所以,
所以關(guān)于的回歸方程為,
因?yàn)?/span>,從而關(guān)于的回歸方程為.
(2)由(1)得該IT從業(yè)人員36歲時(shí)月平均收入為: (千元),
舊個(gè)稅政策下繳交的個(gè)人所得稅為:
(元),
新個(gè)稅政策下繳交的個(gè)人所得稅為:
(元),
故根據(jù)新舊個(gè)稅政策,
則該IT從業(yè)人員36歲時(shí)每個(gè)月少繳交的個(gè)人所得稅為 (元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生的課外閱讀時(shí)間,從中隨機(jī)抽取了50名學(xué)生,獲得了他們某一個(gè)月課外閱讀時(shí)間的數(shù)據(jù)(單位:小時(shí)),將數(shù)據(jù)分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],整理得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的x的值;
(2)試估計(jì)該校所有學(xué)生中,課外閱讀時(shí)間不小于16小時(shí)的學(xué)生人數(shù);
(3)已知課外閱讀時(shí)間在[10,12)的樣本學(xué)生中有3名女生,現(xiàn)從閱讀時(shí)間在[10,12)的樣本學(xué)生中隨機(jī)抽取3人,記X為抽到女生的人數(shù),求X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a,bR).
(1)當(dāng)a=b=1時(shí),求的單調(diào)增區(qū)間;
(2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)a=0時(shí),若的解集為(m,n),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱ABC—A1B1C1中,四邊形AA1B1B為矩形,平面AA1B1B⊥平面ABC,點(diǎn)E,F(xiàn)分別是側(cè)面AA1B1B,BB1C1C對(duì)角線(xiàn)的交點(diǎn).
(1)求證:EF∥平面ABC;
(2)BB1⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)是否存在實(shí)數(shù),同時(shí)滿(mǎn)足下列條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),其值域?yàn)?/span>.若存在,求出,的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)在區(qū)間,內(nèi)各有一個(gè)極值點(diǎn).
(I)求的最大值;
(II)當(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線(xiàn)為,若在點(diǎn)處穿過(guò)函數(shù)的圖象(即動(dòng)點(diǎn)在點(diǎn)附近沿曲線(xiàn)運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把,,,四本不同的書(shū)分給三位同學(xué),每人至少分到一本,每本書(shū)都必須有人分到,,不能同時(shí)分給同一個(gè)人,則不同的分配方式共有__________種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某種細(xì)菌的繁殖個(gè)數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:
天數(shù)x | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖個(gè)數(shù)y | 6 | 12 | 25 | 49 | 95 | 190 |
(1)根據(jù)散點(diǎn)圖,判斷與哪一個(gè)適合作為y關(guān)于x的回歸方程類(lèi)型;(給出判斷即可,不用說(shuō)明理由)
(2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,,,
參考公式:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com