若α∈(-
π
2
π
2
),則“α=
π
3
”是“cosα=
1
2
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若α=
π
3
,則cosα=
1
2
成立,即充分性成立.
若α=-
π
3
滿足cosα=
1
2
,但α=
π
3
不成立,即必要性不成立.
故“α=
π
3
”是“cosα=
1
2
”的充分不必要條件,
故選:A.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知an=
n-
80
n-
79
,n∈N*,則在數(shù)列{an}的前50項(xiàng)中最小項(xiàng)和最大項(xiàng)分別是( 。
A、a1,a50
B、a9,a50
C、a9,a8
D、a8,a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax-b只有一個(gè)零點(diǎn)為2,則g(x)=bx2+ax的零點(diǎn)是( 。
A、0,2
B、0,
1
2
C、0,-
1
2
D、2,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
2+i
3+i
=( 。
A、
1
2
-
i
10
B、
7
10
-
i
10
C、
1
2
+
i
10
D、
7
10
+
i
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={y|y≥1},B=(-∞,-1)∪(2,+∞),則A∪(∁UB)=(  )
A、[1,2]
B、[1,+∞)
C、[-1,+∞)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax,g(x)=-x2-a(a∈R).
(Ⅰ)若函數(shù)F(x)=f(x)-g(x)在x∈[1,+∞)上單調(diào)遞增,求a的最小值;
(Ⅱ)若函數(shù)G(x)=f(x)+g(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,l1,l2是兩條互相垂直的海岸線,C為一海島,ABCD是一矩形漁場(chǎng),為了擴(kuò)大漁業(yè)規(guī)模,將該漁場(chǎng)改建成一個(gè)更大的矩形漁場(chǎng)AMPN,要求點(diǎn)D,N在海岸線l1上,點(diǎn)B,M在海岸線l2上,且兩點(diǎn)M,N連線經(jīng)過海島C,已知AB=3km,AD=2km.
(1)要使矩形AMPN的面積大于32km2,則AN的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最?并求最小面積.
(3)若AN的長度不少于6km,則當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是集合P={1,2,3,…,n}的一個(gè)k元子集(即由k個(gè)元素組成的集合),且A的任何兩個(gè)子集的元素之和不相等;而對(duì)于集合P的包含集合A的任意k+1元子集B,則存在B的兩個(gè)子集,使這兩個(gè)子集的元素之和相等.
(1)當(dāng)n=6時(shí),試寫出一個(gè)三元子集A.
(2)當(dāng)n=16時(shí),求證:k≤5,并求集合A的元素之和S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
n
=(
3
sin
x
4
,-1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n
,
(Ⅰ)求f(x)的值域和單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,若f(A)=-
1
2
,a=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案