【題目】如圖甲所示, 是梯形的高, , , ,先將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: ;
(2)當(dāng)時,求與平面所成角的正弦值.
【答案】(1)見解析;(2) 角的正弦值為 .
【解析】試題分析:(1)由勾股定理可證,又,由直線與平面垂直的判定定理,
可證以平面,所以,進而證明平面
(2)因為,所以點到平面的距離等于點到平面的距離的一半
作 交于點,連接、,可求出,作 交于,
求得,而
,而,可知平面
再由點到平面距離為, 點到平面的距離為,
而,所以與平面所成角的正弦值為.
試題解析:(1)因為是梯形的高, ,
所以
因為, ,
可得,
如圖乙所示, , , ,
所以有,所以
而, ,
所以平面,所以
又,所以、、兩兩垂直.
所以平面
(2)因為,
所以點到平面的距離等于點到平面的距離的一半
作交于點,連接、,
則,
作交于,
則,而
,
而,由, 平面
可知平面
再由點到平面距離為,
點到平面的距離為,
而
所以與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù), 是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若時從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.(本小題滿分12分)
如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓:,其中,,分別為其左,右焦點,點是橢圓上一點,,且.
(1)當(dāng),,且時,求的值;
(2)若,試求橢圓離心率的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱錐,已知,
(1)求此三棱錐內(nèi)切球的半徑.
(2)若是側(cè)面上一點,試在面上過點畫一條與棱垂直的線段,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求:
(1)所取的道題都是選擇題的概率;
(2)所取的道題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(是大于的常數(shù))的左、右頂點分別為、,點是橢圓上位于軸上方的動點,直線、與直線分別交于、兩點(設(shè)直線的斜率為正數(shù)).
(Ⅰ)設(shè)直線、的斜率分別為, ,求證為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點,使得是等邊三角形”的什么條件?(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com