【題目】若a、b、c是常數(shù),則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】A
【解析】解:若a>0且b2﹣4ac<0,則對任意x∈R,有ax2+bx+c>0,
反之,則不一定成立.如a=0,b=0且c>0時,也有對任意x∈R,有ax2+bx+c>0.
故“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的充分不必要條件
故選A
【考點精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如表資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差x(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式: = = , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知為實數(shù),函數(shù),函數(shù).
(1)當(dāng)時,令,求函數(shù)的極值;
(2)當(dāng)時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立,若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系中,已知橢圓: 的離心率,直線過橢圓的右焦點,且交橢圓于, 兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,連結(jié),過點作垂直于軸的直線,設(shè)直線與直線交于點,試探索當(dāng)變化時,是否存在一條定直線,使得點恒在直線上?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校一名籃球運動員在五場比賽中所得分?jǐn)?shù)的莖葉圖,則該運動員在這五場比賽中得分的方差為 .
(注:方差 ,其中 為x1 , x2 , …,xn的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個半圓,在扇形OAB內(nèi)隨機(jī)取一點,則此點取自陰影部分的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)如圖,在長方體中,,,與相交于點,點在線段上(點與點不重合).
(1)若異面直線與所成角的余弦值為,求的長度;
(2)若,求平面與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)圖像上不同兩點A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= 叫曲線y=f(x)在點A與點B之間的“彎曲度”,給出以下命題: (1.)函數(shù)y=x3﹣x2+1圖像上兩點A、B的橫坐標(biāo)分別為1,2,則φ(A,B)> ;
(2.)存在這樣的函數(shù),圖像上任意兩點之間的“彎曲度”為常數(shù);
(3.)設(shè)點A、B是拋物線,y=x2+1上不同的兩點,則φ(A,B)≤2;
(4.)設(shè)曲線y=ex上不同兩點A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,則實數(shù)t的取值范圍是(﹣∞,1);
以上正確命題的序號為(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對周末家庭作業(yè)量的態(tài)度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機(jī)抽取一個容量為200的樣本進(jìn)行調(diào)查,已知從700名高一、高二學(xué)生中共抽取了140名學(xué)生,那么該校有高三學(xué)生名.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com