【題目】給定函數(shù),若存在實(shí)數(shù)對(duì),使得對(duì)定義域內(nèi)的所有,恒成立,則稱為“函數(shù)”.

1)判斷函數(shù),是不是“函數(shù)”;

2)若是一個(gè)“函數(shù)”,求所有滿足條件的有序?qū)崝?shù)對(duì)

3)若定義域?yàn)?/span>的函數(shù)為“函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(duì),當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,求當(dāng)時(shí), 函數(shù)的值域

【答案】,理由見解析;;

【解析】

分別假設(shè)函數(shù)是“函數(shù)”,列出方程對(duì)任意恒成立即可;

根據(jù)題中的定義,列出方程對(duì)任意恒成立,通過整理化簡(jiǎn),令未知數(shù)的系數(shù)和常數(shù)項(xiàng)的對(duì)應(yīng)相等求出滿足條件的有序?qū)崝?shù)對(duì)即可;

根據(jù)題中的定義,列出兩個(gè)恒等式成立,替換,兩等式結(jié)合得到函數(shù)值的遞推關(guān)系,用不完全歸納法求出值域.

函數(shù),是“函數(shù)”,理由如下:

對(duì)于函數(shù),因?yàn)?/span>,

所以要使對(duì)定義域內(nèi)的所有恒成立,只需實(shí)數(shù)對(duì)滿足即可,這樣的實(shí)數(shù)對(duì)有無數(shù)對(duì),故函數(shù)是“函數(shù)”;

對(duì)于函數(shù),因?yàn)?/span>對(duì)任意恒成立,

所以要使對(duì)定義域內(nèi)的所有,恒成立,只需實(shí)數(shù)對(duì)滿足即可, 這樣的實(shí)數(shù)對(duì)有無數(shù)對(duì),故函數(shù)是“函數(shù)”.

因?yàn)?/span>是一個(gè)“函數(shù)”,

所以對(duì)于任意恒成立,

因?yàn)?/span>,

所以對(duì)于任意恒成立,解得,

所以所求的有序?qū)崝?shù)對(duì).

由題意知, ,

因?yàn)?/span>,

即有,當(dāng)時(shí),,

因?yàn)楹瘮?shù)的值域?yàn)?/span>,,

所以的值域?yàn)?/span>,時(shí),,

因?yàn)?/span>所以,

所以時(shí),;時(shí),,

依次類推,時(shí),,

所以時(shí),,

即有時(shí),,

又因?yàn)?/span>,所以時(shí),

綜上可知, 當(dāng)時(shí), 函數(shù)的值域?yàn)?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《爸爸去哪兒》第二季第四期中,村長(zhǎng)給6萌娃布置一項(xiàng)搜尋空投食物的任務(wù).已知:①食物投擲地點(diǎn)有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位小孩在大本營(yíng)陪同,要么參與搜尋近處投擲點(diǎn)的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有______.(以數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)M0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于AB兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為M,N是圓C上一動(dòng)點(diǎn),求的最小值;

若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】歐拉公式為虛數(shù)單位,,為自然底數(shù))是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,表示的復(fù)數(shù)在復(fù)平面中位于( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種微生物的生長(zhǎng)規(guī)律,研究小組在實(shí)驗(yàn)室對(duì)該種微生物進(jìn)行培育實(shí)驗(yàn).前三天觀測(cè)的該微生物的群落單位數(shù)量分別為12,1624.根據(jù)實(shí)驗(yàn)數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中a,bc,p,qr都是常數(shù).

1)根據(jù)實(shí)驗(yàn)數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測(cè)的群落單位數(shù)量分別為4072,請(qǐng)從這兩個(gè)函數(shù)模型中選出更合適的一個(gè),并計(jì)算從第幾天開始該微生物群落的單位數(shù)量超過1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值

(2)若關(guān)于的方程有唯一解,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,角所對(duì)的邊分別為,已知,

1)求的值;

2)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案