如圖,在正四棱錐S-ABCD中,P在SC上,Q在SB上,R在SD上,且SP∶PC=1∶2,SQ∶SB=2∶3,SR∶RD=2∶1求證:SA∥平面PQR.

答案:
解析:

  證:連AC、BD,設交于O,連SO,連RQ交SO于M,取SC中點N,連ON,那么ON∥SA.

  

  ∴RQ∥BD

  

   ∴PM∥ON

  ∵SA∥ON∴SA∥PM,PM平面PQR

  ∴SA∥平面PQR.

  評析:利用平幾中的平行線截比例線段定理.

  三角形的中位線性質(zhì)等知識促成“線線平行”向“線面平行”的轉(zhuǎn)化.


提示:

根據(jù)直線和平面平行的判定定理,必須在平面PQR內(nèi)找一條直線與AS平行即可.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論中恒成立的個數(shù)為( 。
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大;
(3)在△ABC內(nèi)是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省淮安市漣水縣鄭梁梅高中高一(上)第二次月考數(shù)學試卷(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省沈陽市東北育才學校高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案