【題目】已知函數(shù).
(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對(duì)稱(chēng)軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)
【答案】(1)答案見(jiàn)解析;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析.
【解析】試題分析:
(1)由題意結(jié)合五點(diǎn)法列表,據(jù)此繪制函數(shù)圖象即可;
(2)結(jié)合函數(shù)的解析式可得函數(shù)的周期為,振幅為3,初相為,對(duì)稱(chēng)軸方程為:.
(3)結(jié)合三角函數(shù)的變換性質(zhì)可知變換過(guò)程如下:由y=sinx在[0,2π]上的圖象向左平移個(gè)單位,把橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,把縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,向上平移3個(gè)單位,即可得到的圖象.
試題解析:
(1)令取0,,π,,2π,列表如下:
0 | π | 2π | |||
x |
|
|
|
|
|
3 | 6 | 3 | 0 | 3 |
在一個(gè)周期內(nèi)的閉區(qū)間上的圖象如下圖所示:
(2)∵函數(shù)中,A=3,B=3,ω=,φ=.
∴函數(shù)f(x)的周期T=4π,振幅為3,初相為,
對(duì)稱(chēng)軸滿(mǎn)足:,
據(jù)此可得對(duì)稱(chēng)軸方程為:.
(3)此函數(shù)圖象可由y=sinx在[0,2π]上的圖象經(jīng)過(guò)如下變換得到:
①向左平移個(gè)單位,得到y=sin(x+)的圖象;
②再保持縱坐標(biāo)不變,把橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍得到y=的圖象;
③再保持橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍得到y=的圖象;
④再向上平移3個(gè)單位,得到的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿(mǎn)足:在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱(chēng)函數(shù)為“的飽和函數(shù)”.給出下列四個(gè)函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為 的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn (n∈N*),且S3+a3 , S5+a5 , S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若實(shí)數(shù)a使得a>Sn+ 對(duì)任意n∈N*恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程是 以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程與曲線(xiàn)C的普通方程;
(2)線(xiàn)段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+ )
C.f(x)=4sin( x+ )
D.f(x)=4sin( x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F為雙曲線(xiàn) ﹣ =1(a>b>0)的右焦點(diǎn),過(guò)點(diǎn)F的直線(xiàn)分別交兩條漸近線(xiàn)于A,B兩點(diǎn),OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線(xiàn)的離心率為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是直線(xiàn)x=4上一動(dòng)點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線(xiàn)l是圓Γ在點(diǎn)B處的切線(xiàn),過(guò)A(﹣1,0)作圓Γ的兩條切線(xiàn)分別與l交于E,F(xiàn)兩點(diǎn).
(1)求證:|EA|+|EB|為定值;
(2)設(shè)直線(xiàn)l交直線(xiàn)x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,有2Sn=n2+n+4(n∈+)
(1)求數(shù)列的通項(xiàng)公式an;
(2)若bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com