若關(guān)于x的不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}.則t+m=________.

4
分析:由不等式與相應(yīng)方程的關(guān)系得:1,m是方程x2-3x+t=0的兩個根,再依據(jù)根與系數(shù)的關(guān)系即可求得t,m的值;
解答:(1)∵不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
∴1,m是方程x2-3x+t=0的兩根,
,解得
∴t+m=4.
故答案為:4
點(diǎn)評:本小題主要考查一元二次不等式與一元二次方程、對數(shù)不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、若關(guān)于x的不等式x2-4x≥m對任意x∈[-1,1]恒成立,則實(shí)數(shù)m的取值范圍是
(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-px-q<0的解集為(2,3),則關(guān)于x的不等式qx2-px-1>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-ax+1≤0,ax2+x-1>0均不成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-2ax+a2-ab+4≤0恰有一個解,則a2+b2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義區(qū)間長度m為這樣的一個量:m的大小為區(qū)間 右端點(diǎn)的值減去左端點(diǎn)的值.若關(guān)于x的不等式x2-x-6a<0有解,且解集的區(qū)間長度不超過5個單位長,則a的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案