【題目】記無窮數(shù)列的前項中最大值為,最小值為,令

(1)若,寫出,,的值;

(2)設(shè),若,求的值及時數(shù)列的前項和;

(3)求證:“數(shù)列是等差數(shù)列”的充要條件是“數(shù)列是等差數(shù)列”.

【答案】1,(2)見解析(3)見解析

【解析】

1)分別計算出,,結(jié)合題意即可得b1,b2,b3,b4的值;

2)由新定義,可得λ0,考慮三種情況求得λ,檢驗可得所求λ;進(jìn)而得到bn,由數(shù)列的分組求和,可得所求和;

3)充分性易證,無論d為何值,始終有bn,即可證得結(jié)果,必要性須分類證明.

解:(1 因為,所以,

所以

2,

當(dāng)時,,無解;

當(dāng)時,,無解;

當(dāng)時,,解得

當(dāng)時,無解,

此時,

當(dāng)時,,

所以當(dāng)遞增,

,

所以當(dāng)時,

3)必要性:數(shù)列是等差數(shù)列,設(shè)其公差為.

當(dāng)是遞增數(shù)列;當(dāng)是常數(shù)列;當(dāng)時,是遞減數(shù)列;

都有,

所以數(shù)列是等差數(shù)列.

充分性:數(shù)列是等差數(shù)列,設(shè)其公差為

由題意知,,

當(dāng)時,對任意都成立,

,所以是遞增數(shù)列,

,

所以是公差為的等差數(shù)列,

當(dāng)時,,進(jìn)而

所以是遞減數(shù)列,

,

所以是公差為的等差數(shù)列

當(dāng)時,,

因為中至少有一個為,所以二者都為,

進(jìn)而得為常數(shù)列,

綜上,充分性成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,,,平面平面,點上一點.

(1)若平面,求證:點中點;

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),mR

1)討論fx)的單調(diào)性;

2)若m∈(-1,0),證明:對任意的x1,x2[11-m],4fx1+x25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點P

求過點P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)

求過點P并且在兩坐標(biāo)軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列命題:

①在函數(shù)的圖象中,相鄰兩個對稱中心的距離為;

②函數(shù)的圖象關(guān)于點對稱;

的必要不充分條件;

④在中,若,則角等于.

其中是真命題的序號為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABC,DE分別是AC,的中點.

求證:平面

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=(kx+ex2x,若fx)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 (  )

A. [ ,B. ]

C. [D. [

查看答案和解析>>

同步練習(xí)冊答案