【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)是否同時(shí)存在實(shí)數(shù)和正整數(shù),使得函數(shù)在上恰有2019個(gè)零點(diǎn)若存在,請(qǐng)求出所有符合條件的和的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)答案見(jiàn)解析
【解析】
(1)化簡(jiǎn)得:,則當(dāng)時(shí),, 要使對(duì)任意恒成立,令,則,對(duì)任意恒成立,即可求得答案.
(2)若同時(shí)存在實(shí)數(shù)和正整數(shù)滿足條件,函數(shù)在上恰有2019個(gè)零點(diǎn),即函數(shù)與直線在上恰有2019個(gè)交點(diǎn),對(duì)進(jìn)行討論,即可求得答案.
(1)化簡(jiǎn):
當(dāng)時(shí),,
,則
要使對(duì)任意恒成立,
令,則,對(duì)任意恒成立,
只需
解得,
實(shí)數(shù)的取值范圍為.
(2)假設(shè)同時(shí)存在實(shí)數(shù)和正整數(shù)滿足條件,函數(shù)在上恰有2019個(gè)零點(diǎn),即函數(shù)與直線在上恰有2019個(gè)交點(diǎn)
當(dāng)時(shí),,
①當(dāng)或時(shí),函數(shù)與直線在上無(wú)交點(diǎn),
②當(dāng)或時(shí),函數(shù)與直線在上僅有一個(gè)交點(diǎn),
此時(shí)要使函數(shù)與直線在上恰有2019個(gè)交點(diǎn),則;
③當(dāng)或時(shí),函數(shù)與直線在上有兩個(gè)交點(diǎn),
此時(shí)函數(shù)與直線在上有偶數(shù)個(gè)交點(diǎn),不可能有2019個(gè)交點(diǎn),不符合;
④當(dāng)時(shí),函數(shù)與直線在上有2個(gè)交點(diǎn),
此時(shí)要使函數(shù)與直線在上恰有2019個(gè)交點(diǎn),則;
綜上所述,存在實(shí)數(shù)和正整數(shù)滿足條件:
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線與函數(shù),圖像交于異于原點(diǎn)不同的兩點(diǎn),且點(diǎn),若點(diǎn)滿足,則( )
A. B. 2 C. 4 D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,SA=SB=SC=SD,點(diǎn)E,M,N分別是BC,CD,SC的中點(diǎn),點(diǎn)P是MN上的一點(diǎn).
(1)證明:EP∥平面SBD;
(2)求四棱錐S﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛(ài)好.現(xiàn)已知這6人的體育興趣愛(ài)好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛(ài)好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查, 經(jīng)統(tǒng)計(jì)“青少年”與“中老年”的人數(shù)之比為9:11
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年 | 15 | ||
中老年 | |||
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問(wèn)卷調(diào)查.在這9人中再選取3人進(jìn)行面對(duì)面詢問(wèn),記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線過(guò)點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球、兩個(gè)“”號(hào)球、三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球、五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒(méi)有獎(jiǎng)金.
(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額服從正態(tài)分布,某天有為顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù);
(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列;
(Ⅲ)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),請(qǐng)問(wèn):這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com