下列說法正確的有( 。﹤.
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.
A.0B.1C.3D.4
①令f(x)=x3,則f(x)=x3在(-1,1)內(nèi)單調(diào)遞增,但當(dāng)x=0時,f′(x)=0,故①錯誤;
②令f(x)=x3,函數(shù)f(x)在點P(0,0)處的導(dǎo)數(shù)存在,但函數(shù)f(x)圖象在點P處的切線不存在,故②錯誤;
③由于虛數(shù)不能比較大小,故③錯誤;
④由定積分定義可知,In不僅與n有關(guān),還與ξi的選取有關(guān),故④錯誤;
⑤∵2i-3是方程2x2+px+q=0的一個根,
∴2(2i-3)2+p(2i-3)+q=0,
∴10-3p+q+(2p-24)i=0,
2p-24=0
10-3p+q=0
,解得p=12,q=26.故⑤正確.
綜上所述,5個命題中只有一個命題正確.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:
①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“面積相等的三角形全等”的否命題;
③“若a>b>0且c<0,則
c
a
c
b
”的逆否命題;
④命題p:?x∈R,x2+1≥1,命題q:?x∈R,x2-x-1≤0,則命題p∧¬q是真命題.
其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法正確的是______.
①任一條直線都有傾斜角,也都有斜率;
②直線傾斜角越大,斜率就越大;
③過A(x1,y1)B(x2,y2)(x1≠x2)兩點式直線方程為
y-y1
x-x1
=
y2-y1
x2-x1
;
y-y1
x-x1
=k
是過點(x1,y1)且斜率為k的直線;
⑤平行于x軸直線傾斜角為0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

現(xiàn)給出如下四個命題:
①過點A(4,1)且在兩坐標(biāo)軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則αβ;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請你寫出其中所有真命題的序號:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b,c是三條直線,α,β是兩個平面,b?α,c?α,則下列命題不成立的是( 。
A.若αβ,c⊥α,則c⊥β
B.若a是c在α內(nèi)的射影,a⊥b,則b⊥c
C.“若b⊥β,則α⊥β”的逆命題
D.“若bc,則cα”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中
①設(shè)定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②命題“每個指數(shù)函數(shù)都是單調(diào)函數(shù)”是全稱命題,而且是真命題.
③離心率為
1
2
,長軸長為8的橢圓標(biāo)準(zhǔn)方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標(biāo)是(±1,0).
其中正確的為______(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調(diào)遞增;(4)函數(shù)f(x)有兩零點;(5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
2
<|AB|≤2
.則函數(shù)f(x)有關(guān)性質(zhì)中正確描述的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則f(x)=x2+ax-3只有一個零點;
③若lga+lgb=lg(a+b),則a+b的最小值為4;
④對于任意實數(shù)x,有f(-x)=f(x),且當(dāng)x>0時,f'(x)>0,則當(dāng)x<0時,f'(x)<0.
其中正確的命題有______(填所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以下命題:①y=x+
1
x
≥2,②若a>0,b>0且a+b=2,則ab≤1,③
x
+
4
x
的最小值為4,④a∈R,a2+1>2a.其中正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案