設(shè)F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn).
(1)設(shè)橢圓C上點(diǎn)(
3
3
2
)
到兩點(diǎn)F1、F2距離和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程.
分析:(1)把已知點(diǎn)的坐標(biāo)代入橢圓方程,再由橢圓的定義知2a=4,從而求出橢圓的方程,由橢圓的方程求出焦點(diǎn)坐標(biāo).
(2)設(shè)KF1的中點(diǎn)為B(x,y),則由中點(diǎn)坐標(biāo)公式得點(diǎn)K(2x+1,2y),把K的坐標(biāo)代入橢圓方程,化簡(jiǎn)即得線段KF1的中點(diǎn)B的軌跡方程.
解答:解:(1)由于點(diǎn)(
3
3
2
)
在橢圓上,∴
(
3
)
2
a2
+
(
3
2
)
2
b2
=1
,又 2a=4,解得a=2,b=
3

橢圓C的方程為
x2
4
+
y2
3
=1
,焦點(diǎn)坐標(biāo)分別為(-1,0),(1,0).
(2)設(shè)KF1的中點(diǎn)為B(x,y),則由中點(diǎn)坐標(biāo)公式得點(diǎn)K(2x+1,2y),
把K的坐標(biāo)代入橢圓
x2
4
+
y2
3
=1
中,得
(2x+1)2
4
+
(2y)2
3
=1

線段KF1的中點(diǎn)B的軌跡方程為  (x+
1
2
)2+
y2
3
4
=1
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì)、線段的中點(diǎn)公式,以及用代入法求軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)F1,F(xiàn)2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦點(diǎn).
(1)當(dāng)P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8時(shí),求橢圓C的左,右焦點(diǎn)F1、F2
(2)F1、F2是(1)中的橢圓的左,右焦點(diǎn),已知⊙F2的半徑是1,過(guò)動(dòng)點(diǎn)Q的作⊙F2切線QM,使得|QF1|=
2
|QM|
(M是切點(diǎn)),如圖.求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓上一點(diǎn)P(1,
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于4.
(Ⅰ)求此橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N,且線段MN的垂直平分線過(guò)定點(diǎn)G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)F1、F2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦點(diǎn).
(I)當(dāng)p∈C,且
pF1
pF
2
=0
|
pF1
|•|
pF
2
|=4
時(shí),求橢圓C的左、右焦點(diǎn)F1、F2的坐標(biāo).
(II)F1、F2是(I)中的橢圓的左、右焦點(diǎn),已知F2的半徑是1,過(guò)動(dòng)點(diǎn)Q作的切線QM(M為切點(diǎn)),使得|QF1|=
2
|QM|
,求動(dòng)點(diǎn)Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
x2
b2
=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn).
(1)設(shè)橢圓C上的點(diǎn)(
2
2
,
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于2
2
,寫(xiě)出橢圓C的方程;
(2)設(shè)過(guò)(1)中所得橢圓上的焦點(diǎn)F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線l與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點(diǎn)P及直線l有關(guān),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案