已知x1,x2,…,xn(n∈N*,n>100)的平均數(shù)是
.
x
,方差是s2
(Ⅰ)求數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和方差;
(Ⅱ)若a是x1,x2,…,x100的平均數(shù),b是x101,x102,…,xn的平均數(shù).試用a,b,n表示
.
x
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由題意有
.
x
=
x1+x2+…+xn
n
,由此能求出數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和方差.(Ⅱ)由已知條件得
.
x
=
x1+x2+…+xn
n
=
(x1+x2+…+x100)+(x101+…+xn)
n
,由此能求出結(jié)果.
解答: 解:(Ⅰ)由題意有
.
x
=
x1+x2+…+xn
n

設(shè)數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和方差分別為
.
x
,s2
,
.
x
=
(3x1+2)+(3x2+2)+…+(3xn+2)
n
=
3(x1+x2+…+xn)
n
+2=3
.
x
+2
…(5分)s2=
1
n
[(3x1+2-
.
x
)2+(3x2+2-
.
x
)2+…+(3xn+2-
.
x
)2]

=
1
n
[9(x1-
.
x
)2+9(x2-
.
x
)2+…+9(xn-
.
x
)2]=9s2
.…(9分)
(Ⅱ)
.
x
=
x1+x2+…+xn
n
=
(x1+x2+…+x100)+(x101+…+xn)
n

=
100a+(n-100)b
n
.…(13分)
點(diǎn)評:本題考查平均數(shù)和方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意方差公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=1-
1
4an
,其中n∈N*
(1)設(shè)bn=
2
2an-1
,求證:數(shù)列{bn}是等差數(shù)列;
(2)若cn=6n+(-1)n-1λ•2 bn是否存在λ,使得對任意n∈N+,都有cn+1>cn,若存在,求出λ的取值范圍;若不存在,說明理由;
(3)證明::對一切正整數(shù)n,有
1
b1(b1+1)
+
1
b2(b2+1)
+…+
1
bn(bn+1)
13
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在含有3件次品的5件產(chǎn)品中,任取2件,試求:
(Ⅰ)取到的次品數(shù)X的分布列;
(Ⅱ)至多有1件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+bx的圖象為曲線E.
(1)若a=3,b=-9,求函數(shù)f(x)的極值;
(2)若曲線E上存在點(diǎn)P,使曲線E在P點(diǎn)處的切線與x軸平行,求a,b的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時,f(x)>1.
(1)求證:函數(shù)f(x)在R上是增函數(shù);
(2)若關(guān)于x的不等式f(x2-ax+5a)<f(m)的解集為{x|-3<x<2},求m的值.
(3)若f(1)=2,求f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列;數(shù)列{bn}是公比為2的等比數(shù)列,且{bn}的前4項(xiàng)的和為
15
2

(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若d=3,求數(shù)列{an}中滿足b8≤ai≤b9(i∈N*)的所有項(xiàng)ai的和;
(3)設(shè)數(shù)列{cn}滿足cn=an•bn,數(shù)列{cn}的前n項(xiàng)和為Tn,若Tn的最大值為T5,求公差d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=2,E、F分別是AB、CD上的動點(diǎn),且EF∥BC,設(shè)AE=x(0<x<2),沿EF將梯形ABCD翻折,使使平面AEFD⊥平面EBCF,如圖(2).

(1)求證:平面ABE⊥平面ABCD;
(2)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
x+xln2的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三階行列式
.
-234
01-1
1x-3
.
中第二行、第三列元素-1的代數(shù)余子式的值等于1,則其中的元素x的值為
 

查看答案和解析>>

同步練習(xí)冊答案