甲、乙兩地相距100Km,汽車從甲地勻速行駛到乙地,速度不得超過50Km/h.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成; 可變部分與速度v(單位:Km/h)的平方成正比,且比例系數(shù)為4; 固定部分為a2元(a>0).為了使全程運輸成本最小,汽車應以多大的速度行駛?

解:設汽車的運輸成本為y,由題意得(0<v≤50)…(4分)
時,即時,y有最小值為400a …(6分)
時,設0<v1<v2<50,則
=…(8分)
,∴
∴y2-y1<0
∴函數(shù)為減函數(shù)…(10分)
此時當v=50時y有最小值為20000+2a2…(12分)
分析:根據(jù)汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成,建立函數(shù)關系式,再利用基本不等式及函數(shù)的單調性,即可求得函數(shù)的最小值.
點評:本題考查函數(shù)模型的構建,考查學生利用數(shù)學知識解決實際問題的能力,考查函數(shù)最值的求法,正確求函數(shù)的最值是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一艘輪船在航行中每小時的燃料費和它的速度的立方成正比,已知在速度為每小時10公里的燃料費是每小時6元,而其他與速度無關的費用是每小時96元,問
(1)若輪船以每小時24公里的速度航行,求行駛100公里的費用總和.
(2)如果甲、乙兩地相距100公里,求輪船從甲地航行到乙地的總費用的最小值,并求出此時輪船的航行速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=
1
128000
x3-
3
80
x+8(0<x≤120)
已知甲、乙兩地相距100千米.求當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某輪船在海面上勻速行駛,該輪船每小時使用燃料的費用(單位:元)和輪船速度(單位:海里/時)的平方成正比.當速度是10海里/時它的燃料費用是每小時30元,其余費用(不論速度如何)都是每小時480元,如果甲、乙兩地相距100海里,
(1)求輪船從甲地行駛到乙地,所需的總費用與船速的關系式;
(2)問船速為多少時,總費用最低?并求出最低費用是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數(shù)解析式可以表示為y=
1
128000
x3-
3
80
x+8,x∈(0,120]
,且甲、乙兩地相距100千米,則當汽車以
80
80
千米/小時的速度勻速行駛時,從甲地到乙地耗油量最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

統(tǒng)計表明,某型號的汽車每小時耗油量y(升)關于行使速度x(千米/小時)的函數(shù)解析式可以表示為y=
1
1000
x2-
1
30
x+6.4,(0<x≤120)
,已知甲、乙兩地相距100千米.
(1)若汽車以40千米/小時的速度行使,求從甲地到乙地的耗油量;(結果精確到0.01升);
(2)當汽車以多大速度勻速行使時,從甲地到乙地的耗油量最少?最少為多少升?(結果精確到0.01升)

查看答案和解析>>

同步練習冊答案