【題目】函數(shù)f(x)= (x∈R).
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【答案】(1)1(2)(-∞,-3)∪[-,1]∪(,+∞).
【解析】 試題分析:(1)先求各段函數(shù)最小值,再求三段最小值得最小值(2)先根據(jù)最值研究恒成立問題,解得P為真時(shí)實(shí)數(shù)m的取值范圍;根據(jù)冪函數(shù)性質(zhì)確定Q為真時(shí)實(shí)數(shù)m的取值范圍;再由“p或q”為真,“p且q”為假得p真q假或若p假q真,最后不等式組得實(shí)數(shù)m的取值范圍.
試題解析:(1)作出函數(shù)f(x)的圖象,如圖.
可知函數(shù)f(x)在(-∞,-2)上單調(diào)遞減,在(-2,+∞)上單調(diào)遞增,故f(x)的最小值為f(x)min=f(-2)=1.
(2)對(duì)于命題p,m2+2m-2≤1,故-3≤m≤1;對(duì)于命題q,m2-1>1,故m>或m<-.
由于“p或q”為真,“p且q”為假,則
①若p真q假,則解得-≤m≤1.
②若p假q真,則
解得m<-3或m>. 故實(shí)數(shù)m的取值范圍是(-∞,-3)∪[-,1]∪(,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足 為常數(shù)
(1)求函數(shù)f(x)的表達(dá)式;
(2)如果f(x)為偶函數(shù),求a的值;
(3)當(dāng)f(x)為偶函數(shù)時(shí),若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2;其中x1<0,0<x2<1;求實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古代中國(guó)數(shù)學(xué)輝煌燦爛,在《張丘建算經(jīng)》中記載:“今有十等人,大官甲等十人官賜金,以等次差降之.上三人先入,得金四斤持出;下四人后入,得金三斤持出;中央三人未到者,亦依等次更給.問:各得金幾何及未到三人復(fù)應(yīng)得金幾何?”則該問題中未到三人共得金多少斤?( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|).
(1)求實(shí)數(shù)a,b的值;
(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在棱長(zhǎng)均為2的正四棱錐P﹣ABCD中,點(diǎn)E為PC中點(diǎn),則下列命題正確的是( )
A.BE平行面PAD,且直線BE到面PAD距離為
B.BE平行面PAD,且直線BE到面PAD距離為
C.BE不平行面PAD,且BE與平面PAD所成角大于
D.BE不平行面PAD,且BE與面PAD所成角小于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=( )2表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④y=2|x|的最小值為1
⑤對(duì)于函數(shù)f(x),若f(﹣1)f(3)<0,則方程f(x)=0在區(qū)間[﹣1,3]上有一實(shí)根;
其中正確命題的序號(hào)是(填上所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有車牌尾號(hào)為的汽車和尾號(hào)為的汽車,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部分.對(duì)一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:
車尾號(hào) | 和 | 和 | 和 | 和 | 和 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨(dú)立.
(I)求該單位在星期一恰好出車一臺(tái)的概率.
(II)設(shè)表示該單位在星期一與星期二兩天的出車臺(tái)數(shù)之和,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)=
(1)若a=﹣3,求f(10),f(f(10))的值;
(2)若f(1﹣a)=f(1+a),求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com