【題目】某校高一某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

(1)求分數(shù)在[50,60)的頻率及全班人數(shù);

(2)求分數(shù)在[80,90)的頻數(shù),并計算頻率分布直方圖中[8090)間的矩形的高;

(3)若規(guī)定:90(包含90)以上為優(yōu)秀,現(xiàn)從分數(shù)在80(包含80)以上的試卷中任取兩份分析學生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.

【答案】(1)25人;(2)0.016;(3)

【解析】

1)由頻率分布直方圖能求出分數(shù)在[50,60)的頻率,由莖葉圖得分類在[5060)的人數(shù),由此能求出全班人數(shù).(2)由莖葉圖能求出分數(shù)在[8090)之間的頻數(shù),由此能求出頻率分布直方圖中[80,90)間的矩形的高.(3)利用古典概型的概率公式解答.

解:(1)分數(shù)在[50,60)的頻率為0.008×100.08.

由莖葉圖知,分數(shù)在[50,60)的頻數(shù)為2,所以全班人數(shù)為.

(2)分數(shù)在[80,90)的頻數(shù)為25271024

頻率分布直方圖中[80,90)間的矩形的高為.

(3)(2)可知分數(shù)在[80,100)的人數(shù)為426.

設(shè)分數(shù)在[8090)的試卷為A,B,C,D,分數(shù)在[90,100]的試卷為a,b.

則從6份卷中任取2份,共有15個基本事件,

分別是ABAC,ADAa,Ab,BCBD,Ba,BbCD,Ca,Cb,DaDb,ab

其中至少有一份優(yōu)秀的事件共有9個,

分別是Aa,Ab,Ba,BbCa,Cb,Da,Db,ab,

∴在抽取的試卷中至少有一份優(yōu)秀的概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義域為R的奇函數(shù),且滿足fx2)=fx+2),當x0,2)時,fx)=lnx2x+1),則方程fx)=0在區(qū)間[0,8]上的解的個數(shù)是( 。

A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 設(shè)命題p:函數(shù)y在定義域上為減函數(shù);命題qab(0,+∞),當ab=1時,=3.以下說法正確的是(  )

A. pq為真B. pq為真

C. pqD. pq均假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)求ff1)),ff1));

2)畫出fx)的圖象;

3)若fx=a,問a為何值時,方程沒有根?有一個根?兩個根?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線)的焦點F且斜率為1的直線交拋物線CM,N兩點,且

1)求p的值;

2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(AB均與點Q不重合).設(shè)直線QA,QB的斜率分別為.

i)直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;

ii)設(shè)點T在直線l上,且滿足,其中為坐標原點.當線段最長時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】昆明市某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300),該社團將該校區(qū)在2018年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖4,把該直方圖所得頻率估計為概率.

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4度中度污染

5度重度污染

6級嚴重污染

(1)請估算2019年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);

(2)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在,的天數(shù)中各應(yīng)抽取幾天?

(3)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為2000元,空氣質(zhì)量等級為3級時每天需凈化空氣的費用為4000元若在(2)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用的分布列

查看答案和解析>>

同步練習冊答案