【題目】已知函數(shù)的圖象與軸的交點中相鄰兩個交點的距離是,當取得最小值

(1)求函數(shù)的解析式;

(2)求函數(shù)在區(qū)間的最大值和最小值;

(3)若函數(shù)的零點為,求.

【答案】(1);(2)最大值為1,最小值為;(3).

【解析】試題分析:(1)由題意知,振幅A=2,將點代入得,最終得到解析式;(2)0≤x時,≤2x+,故-sin(2x+)≤1,進而得到最值;(3)由條件得到sin(2+)=,.

解析:

(1)由題意知,振幅A=2,周期T=,.

將點代入得

,故..

(2)當0≤x時,≤2x+,故-sin(2x+)≤1,

∴函數(shù)在區(qū)間的最大值為1,此時,x=;最小值為-,此時x=.

(3)由函數(shù)的零點為知:是方程的根,故

sin(2+)=,又(2+)+(-2)=,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我國加入WTO時,根據(jù)達成的協(xié)議,某產(chǎn)品的市場供應量P與市場價格x的關系近似滿足P(x)=2(1-kt)(xb)2(其中t為關銳的稅率,且t[0, ),x為市場價格,b、k為正常數(shù)).當t時的市場供應量曲線如圖所示.

(1)根據(jù)圖象求b、k的值;

(2)記市場需求量為Q,它近似滿足Q(x)=,當PQ時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學經(jīng)典名著,它在集合學中的研究比西方早1千年,在《九章算術》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,OAD的中點,射線OPOA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結論:

;

②任意,都有

③任意,都有.

其中正確結論的序號是__________. (把所有正確結論的序號都填上).

【答案】①②

【解析】試題分析::如圖,當時, 相交于點,,則,

∴①正確;:由于對稱性, 恰好是正方形的面積,

,∴②正確;:顯然是增函數(shù),,∴③錯誤.

考點:函數(shù)性質(zhì)的運用.

型】填空
束】
17

【題目】化簡

1

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1 , CD的中點,求證:平面ADE⊥平面A1FD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)左、右焦點分別為F1 , F2 , A(2,0)是橢圓的右頂點,過F2且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點M,N(M,N不同于點A),若 =0, =
①求證:直線l過定點;并求出定點坐標;
②求直線AT的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號是______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

同步練習冊答案