【題目】已知A、B是拋物線W: 上的兩個(gè)動(dòng)點(diǎn),F是拋物線W的焦點(diǎn), 是坐標(biāo)原點(diǎn),且恒有.
(1)若直線OA的傾斜角為時(shí),求線段AB的中點(diǎn)C的坐標(biāo);
(2)求證直線AB經(jīng)過一定點(diǎn),并求出此定點(diǎn).
【答案】(1)中點(diǎn)C()(2)定點(diǎn)坐標(biāo)
【解析】試題分析:(1)由點(diǎn)斜式寫出直線OA 方程,與拋物線方程聯(lián)立解得A點(diǎn)坐標(biāo),由得直線OB的傾斜角為,由點(diǎn)斜式寫出直線OB方程,與拋物線方程聯(lián)立解得B點(diǎn)坐標(biāo),最后根據(jù)中點(diǎn)坐標(biāo)公式得 AB的中點(diǎn)C的坐標(biāo);(2)先設(shè)直線OA的斜率,由點(diǎn)斜式寫出直線OA 方程,與拋物線方程聯(lián)立解得A點(diǎn)坐標(biāo),由得直線OB的斜率,由點(diǎn)斜式寫出直線OB方程,與拋物線方程聯(lián)立解得B點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)式得AB方程,根據(jù)方程求出定點(diǎn)坐標(biāo)
試題解析:(1)OA: ,所以由得
因?yàn)?/span>,所以O(shè)B: ,所以由得
因此線段AB的中點(diǎn)C的坐標(biāo)為()
(2)設(shè)OA: ,所以由得
因?yàn)?/span>,所以O(shè)B: ,所以由得
所以AB:
因此直線AB經(jīng)過一定點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點(diǎn)數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的結(jié)果有多少種?
(3)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的概率為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中幾錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾 組對(duì)應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | a |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則表中a的值為( )
A.3
B.3.15
C.3.5
D.4.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2, .
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的極坐標(biāo)方程為ρcos(θ﹣ )=﹣1,曲線C2的極坐標(biāo)方程為ρ=2 cos(θ﹣ ).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(1)求曲線C2的直角坐標(biāo)方程;
(2)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)是定義在(﹣2,2)上的減函數(shù),則不等式f( )+f(2x﹣1)>0的解集是( )
A.(﹣∞, )
B.[﹣ ,+∞)
C.(﹣6,﹣ )
D.(﹣ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,2),B(4,6), =t1 +t2 ,其中t1、t2為實(shí)數(shù);
(1)若點(diǎn)M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時(shí),不論t2為何值,A、B、M三點(diǎn)共線;
(3)若t1=a2 , ⊥ ,且△ABM的面積為12,求a和t2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù), .
(I)求函數(shù)上零點(diǎn)的個(gè)數(shù);
(II)設(shè),若函數(shù)在上是增函數(shù).
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com