如圖所示的六面體,面ABC∥面A1B1C1,AA1⊥面ABC,AA1=A1C1=2AB=2A1B1=2AC=2,AD⊥DC1,D為BB1的中點.
(1)求證:AB⊥AC;
(2)求四面體C1-ADC的體積.
考點:棱柱、棱錐、棱臺的體積,空間中直線與直線之間的位置關系
專題:常規(guī)題型,空間位置關系與距離
分析:(1)要證AB⊥AC,由于A1C1∥AC,可以轉化為證明A1C1⊥AB,通過證明A1C1⊥面ABB1 A1,可以證明A1C1⊥AB;
(2)要求四面體C1-ADC的體積,可以轉化為求四面體D-ACC1 的體積.
解答: 解:(1)證明:連結DA1,由題意得,面ABB1 A1 為矩形,
∵AA1=2AB=2A1B1
∴AD⊥DA1
因為AD⊥DC1,A1 D∩DC1=D,
所以AD⊥面DC1 A1,得AD⊥A1C1
所以A1C1⊥面ABB1 A1,
∵AB?面ABB1 A1
∴A1C1⊥AB
又∵A1C1∥AC
∴AB⊥AC.
(2)V C1-ADC=VD-ACC1=
1
3

所以四面體C1-ADC的體積為
1
3

點評:本題考查了線面位置關系的證明及幾何體的體積,證明線線垂直一般轉化成證明線面垂直;求三棱錐的體積關鍵是通過轉換頂點轉化成易求底面積和高的三棱錐的體積問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中
AB
=
a
,
BC
=
b
,則
a
+
b
等于( 。
A、
CA
B、
BC
C、
AB
D、
AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CD,AB=2BC=2CD=2,E是AB的中點,F(xiàn)是DE的中點,沿直線DE將△ADE翻折至△A′DE(如圖2),
(Ⅰ)取A′B的中點G,求證:EG∥面A′FC;
(Ⅱ)若使二面角A′-DE-B為60°,求二面角F-A′B-C的正切值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-3x2+a(5-a)x+b.
(1)當a=4,b=15時,解不等式f(x)>0;
(2)若對任意實數(shù)a,f(2)<0恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止,設甲在每局中獲勝的概率為
2
3
,乙在每局中獲勝的概率為
1
3
,且各局勝負相互獨立.
(1)求甲在打的局數(shù)最少的情況下獲勝的概率;
(2)求比賽停止時已打局數(shù)ξ的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°;
(1)在線段PC上找一點M,使BM⊥面PCD.
(2)求由面PBC與面PAD所成角的二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(1+x)α的定義域是[-1,+∞),其中常數(shù)α>0.
(1)若α>1,求y=f(x)的過原點的切線方程.
(2)當α>2時,求最大實數(shù)A,使不等式f(x)>1+αx+Ax2對x>0恒成立.
(3)證明當α>1時,對任何n∈N*,有1<
1
n
n+1
k=2
((
k-1
k
α+
α
k
)<α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12;數(shù)列{bn}的前n項和是Sn,且Sn+
1
2
bn=1.
(1)求數(shù)列{an}和{bn}通項公式;
(2)記cn=
-2
an•log
bn
2
,數(shù)列{cn}的前n項和為Tn,若Tn
m-2012
2
對一切n∈N*都成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù),并且滿足f(x+2﹚=-
1
f(x)

(1)當2≤x≤3時,f(x)=x,試求f(105.5)的值;
(2)當x∈[0,2]時,f(x)=2x-1 試求當x∈﹙6,10﹚時,f(x)的解析式.

查看答案和解析>>

同步練習冊答案