【題目】2022年北京冬季奧運(yùn)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將在202224220日在北京和張家口聯(lián)合舉行.某研究機(jī)構(gòu)為了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)學(xué)生中抽取了120人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)之比為1113,男生中有30人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人表示對(duì)冰壺運(yùn)動(dòng)沒(méi)有興趣.

1)完成2×2列聯(lián)表,并回答能否有99%的把握認(rèn)為對(duì)冰壺是否有興趣與性別有關(guān)?

有興趣

沒(méi)有興趣

合計(jì)

30

15

合計(jì)

120

2)若將頻率視為概率,現(xiàn)再?gòu)脑撔Hw學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰壺有興趣的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望和方差.

附:參考公式,其中na+b+c+d.

臨界值表:

PK2K0

0.150

0.100

0.050

0.025

0.010

K0

2.072

2.076

3.841

5.024

6.635

【答案】1)填表見(jiàn)解析;有99%的把握認(rèn)為對(duì)冰壺是否有興趣與性別有關(guān)2)詳見(jiàn)解析

【解析】

1)先根據(jù)比例關(guān)系求解男女同學(xué)的人數(shù),完成表格,求解觀測(cè)值得出結(jié)論;

2)根據(jù)二項(xiàng)分布的特點(diǎn)求解分布列和期望、方差.

1)因?yàn)槟猩c女生的人數(shù)之比為1113,且總?cè)藬?shù)為120,所以男生共有55人,女生共有65人;表格如下:

有興趣

沒(méi)有興趣

合計(jì)

30

25

55

50

15

65

合計(jì)

80

40

120

根據(jù)表格求出K2,

故有99%的把握認(rèn)為對(duì)冰壺是否有興趣與性別有關(guān).

2)由列表可知,對(duì)冰壺有興趣的學(xué)生頻率為,將其視為概率,

由題意XB5,),

X

0

1

2

3

4

5

P

EX)=npDx)=npq.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè)θ[0,π],且fθ1,求θ的值;

2)在ABC中,AB1,fC1,且ABC的面積為,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2x+3|+|2x1|

1)求不等式fx≤6的解集;

2)若關(guān)于x的不等式fx)<|m1|的解集非空,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中,平面,,,且,點(diǎn)的中點(diǎn).

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列{an}滿足a11,a21,an+2an+an+1,則稱(chēng)數(shù)列{an}為斐波那契數(shù)列,斐波那契螺旋線是根據(jù)斐波那契數(shù)列畫(huà)出來(lái)的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長(zhǎng)方形中畫(huà)一個(gè)圓心角為90°的扇形,連起來(lái)的弧線就是斐波那契螺旋線,如圖所示的7個(gè)正方形的邊長(zhǎng)分別為a1a2,,a7,在長(zhǎng)方形ABCD內(nèi)任取一點(diǎn),則該點(diǎn)不在任何一個(gè)扇形內(nèi)的概率為(

A.1B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1)。

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對(duì)任意x,xxx,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售部隨機(jī)抽取了1000名銷(xiāo)售員1天的銷(xiāo)售記錄,經(jīng)統(tǒng)計(jì),其柱狀圖如圖.

該公司給出了兩種日薪方案.

方案1:沒(méi)有底薪,每銷(xiāo)售一件薪資20元;

方案2:底薪90元,每日前5件的銷(xiāo)售量沒(méi)有獎(jiǎng)勵(lì),超過(guò)5件的部分每件獎(jiǎng)勵(lì)20元.

1)分別求出兩種日薪方案中日工資y(單位:元)與銷(xiāo)售件數(shù)n的函數(shù)關(guān)系式;

2)若將頻率視為概率,回答下列問(wèn)題:

(Ⅰ)根據(jù)柱狀圖,試分別估計(jì)兩種方案的日薪X(單位:元)的數(shù)學(xué)期望及方差;

(Ⅱ)如果你要應(yīng)聘該公司的銷(xiāo)售員,結(jié)合(Ⅰ)中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,分析選擇哪種薪資方案比較合適,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零點(diǎn)分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是________(由小到大).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MACPA=PD=,AB=4.

(I)求證:MPB的中點(diǎn);

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案