【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.
【答案】(Ⅰ)解:由 ,得asinB=bsinA,
又asinA=4bsinB,得4bsinB=asinA,
兩式作比得: ,∴a=2b.
由 ,得 ,
由余弦定理,得 ;
(Ⅱ)解:由(Ⅰ),可得 ,代入asinA=4bsinB,得 .
由(Ⅰ)知,A為鈍角,則B為銳角,
∴ .
于是 , ,
故 .
【解析】(Ⅰ)由正弦定理得asinB=bsinA,結(jié)合asinA=4bsinB,得a=2b.再由 ,得 ,代入余弦定理的推論可求cosA的值;
(Ⅱ)由(Ⅰ)可得 ,代入asinA=4bsinB,得sinB,進(jìn)一步求得cosB.利用倍角公式求sin2B,cos2B,展開兩角差的正弦可得sin(2B﹣A)的值.
【考點(diǎn)精析】關(guān)于本題考查的兩角和與差的正弦公式和二倍角的余弦公式,需要了解兩角和與差的正弦公式:;二倍角的余弦公式:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域?yàn)?/span>的單調(diào)函數(shù),對于任意的,都有,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉辦青年歌手大獎賽,有十名評委打分,已知甲、乙兩名選手演唱后的得分如莖葉圖如圖所示.
(1)從統(tǒng)計學(xué)的角度,你認(rèn)為甲與乙比較,演唱水平怎樣?
(2)現(xiàn)場有三名點(diǎn)評嘉賓A,B,C,每位選手可以從中選兩位接受其指導(dǎo),若選手選每位點(diǎn)評嘉賓的可能性相等,求甲、乙兩名選手選擇的點(diǎn)評嘉賓恰有一人重復(fù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O過平行四邊形ABCT的三個頂點(diǎn)B,C,T,且與AT相切,交AB的延長線于點(diǎn)D.
(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù),).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若為整數(shù),,且當(dāng)時,恒成立,其中為的導(dǎo)函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域?yàn)閇1,2],則函數(shù)y=f( )定義域?yàn)閇4,8]
其中正確命題的序號是 . (填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABCA1B1C1的所有棱長都為2,D為CC1的中點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)求二面角AA1DB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】6男4女站成一排,求滿足下列條件的排法共有多少種.(列出算式即可)
(1)任何2名女生都不相鄰,有多少種排法?
(2)男甲不在首位,男乙不在末位,有多少種排法?
(3)男生甲、乙、丙順序一定,有多少種排法?
(4)男甲在男乙的左邊(不一定相鄰)有多少種不同的排法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com