A. | $\frac{1}{6}$ | B. | $-\frac{3}{5}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{3}$ |
分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解a,然后求解目標(biāo)函數(shù)的最小值.
解答 解:變量x、y滿足約束條件$\left\{\begin{array}{l}x+y-3≥0\\ 3x-y-3≥0\\ x≤a\end{array}\right.$的可行域如圖:
$\frac{y}{x+1}$表示經(jīng)過可行域內(nèi)一點(diǎn)(x,y)與點(diǎn)P(-1,0)的直線的斜率,
當(dāng)取直線x=a與3x-y-3=0的交點(diǎn)A(a,3a-3)時,$\frac{y}{x+1}$取最大值2,
即$\frac{3a-3}{a+1}=2$,得a=5,則取點(diǎn)(5,-2)時,
$\frac{y}{x+1}$取最小值$-\frac{1}{3}$.
故選:D.
點(diǎn)評 本題考查線性規(guī)劃的應(yīng)用,目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵,考查轉(zhuǎn)化思想以及數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=x | B. | y2=2x | C. | y2=4x | D. | y2=8x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sn+1an>Snan+1 | B. | Sn+1an<Snan+1 | C. | Sn+1an≥Snan+1 | D. | Sn+1an≤Snan+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | (-2,3) | C. | (3,4) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\sqrt{14}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com