【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;

(3)當(dāng) 時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

【答案】(1) (2) (3)

【解析】試題分析:(1)依題意確定的定義域,對求導(dǎo),求出函數(shù)的單調(diào)性,即可求出函數(shù)的最大值;(2)表示出,根據(jù)其圖象上存在一點(diǎn),使此處切線的斜率可得,在上有解,即可求出實(shí)數(shù)的取值范圍;(3)由,方程有唯一實(shí)數(shù)解,構(gòu)造函數(shù),求出的單調(diào)性,即可求出正數(shù)的值.

試題解析:(1)依題意, 的定義域?yàn)?/span>,當(dāng)時(shí), ,

,得,解得

,得,解得

,∴單調(diào)遞増,在單調(diào)遞減;所以的極大值為,此即為最大值

(2),則有,在上有解,

,∵,所以當(dāng)時(shí),

取得最小值,∴

(3)由,令,

,∴上單調(diào)遞增,而,

∴在,即,在,即,

單調(diào)遞減,在單調(diào)遞増,∴極小值,令,即時(shí)方程有唯一實(shí)數(shù)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, , ,點(diǎn)是線段的中點(diǎn).

(1)求證: ;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中, 平面,點(diǎn)是線段的中點(diǎn).

(1)如果,求證:平面平面;

(2)如果,求直線和平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.(1)求的值;(2)若對, 恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .

(1)求證: 平面

(2)線段上是否存在一點(diǎn),使得 ?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cos(75°+α)=α是第三象限角,

(1)求sin(75°+α) 的值.

(2)求cos(α-15°) 的值.

(3)求sin(195°-α)+cos(105oα)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.

(1)求f(x)的解析式,并畫出f(x)的圖象;

(2)設(shè)g(x)=f(x)-k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時(shí),函數(shù)g(x)有一個(gè)零點(diǎn)?二個(gè)零點(diǎn)?三個(gè)零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2=12,直線l:4x+3y=25,設(shè)點(diǎn)A是圓C上任意一點(diǎn),求點(diǎn)A到直線l的距離小于2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)Sn=(﹣1)n ,若存在正整數(shù)n,使得(an1﹣p)(an﹣p)<0成立,則實(shí)數(shù)p的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案