已知函數(shù)f(x)=x3+x2+mx+1在區(qū)間(-1,2)上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是________.
-16<m<
分析:對(duì)函數(shù)進(jìn)行求導(dǎo),令導(dǎo)函數(shù)等于0在區(qū)間(-1,2)上有解,然后建立關(guān)系式,解之即可.
解答:y′=3x
2+2x+m
∵函數(shù)f(x)=x
3+x
2+mx+1在區(qū)間(-1,2)上不是單調(diào)函數(shù)
∴y′=3x
2+2x+m=0在區(qū)間(-1,2)上有解,即△=4-12m>0,f(2)>0
∴-16<m<
.
故答案為:-16<m<
.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系.即當(dāng)導(dǎo)數(shù)大于0是原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,在區(qū)間(a,b)上存在極值,則在區(qū)間(a,b)上不單調(diào).