【題目】兩個隨機變量x,y的取值表為

x

0

1

3

4

y

2.2

4.3

4.8

6.7

若x,y具有線性相關關系,且 = x+2.6,則下列四個結論錯誤的是(
A.x與y是正相關
B.當x=6時,y的估計值為8.3
C.x每增加一個單位,y增加0.95個單位
D.樣本點(3,4.8)的殘差為0.56

【答案】D
【解析】解:對于A:結合表格,顯然正確;
對于B: = (0+1+3+4)=2,
= (2.2+4.3+4.8+6.7)=4.5,
∴4.5=2 +2.6,解得: =0.95,
=0.95 +2.6,
x=6時, =0.95×6+2.6=8.3,
故B正確;
對于C:由 =0.95 +2.6,得C正確;
對于D:x=3時, =0.95×3+2.6=5.45,
殘差是:5.45﹣4.8=0.65,
故D錯誤;
故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某高校進行社會實踐,對歲的人群隨機抽取 1000 人進行了一次是否開通“微博”的調查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的.

(1)求歲與歲年齡段“時尚族”的人數(shù);

(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡時尚達人大賽,其中兩人作為領隊.求領隊的兩人年齡都在歲內的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若f(x)是定義在(﹣∞,+∞)上的偶函數(shù),x1 , x2∈[0,+∞)(x1≠x2),有 ,則(
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C,F(xiàn)為⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D,連接CF交AB于點E.求證:DE2=DADB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面平面;

(3)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面;

(2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于157.5cm和187.5cm之間,將測量結果按如下方式分成6組:第1組[157.5,162.5),第2組[162.5,167.5),…,第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.

(1)試評估該校高三年級男生的平均身高;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的分布列和數(shù)學期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是(
A.若a,b∈R,且a+b>4,則a,b至少有一個大于2
B.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
C.若命題p:“ >0”,則¬p:“ ≤0”
D.△ABC中,A是最大角,則sin2A>sin2B+sin2C是△ABC為鈍角三角形的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在實數(shù)集上的函數(shù)滿足,的導函數(shù),則不等式的解集為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案