15.半徑為2的圓C的圓心在第四象限,且與直線x=0和$x+y=2\sqrt{2}$均相切,則該圓的標(biāo)準(zhǔn)方程為(  )
A.(x-1)2+(y+2)2=4B.(x-2)2+(y+2)2=2C.(x-2)2+(y+2)2=4D.(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=4

分析 設(shè)圓心坐標(biāo)為(2,-a)(a>0),則圓心到直線的距離d=$\frac{|2-a-2\sqrt{2}|}{\sqrt{2}}$=2,求出a,即可求出圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)圓心坐標(biāo)為(2,-a)(a>0),則圓心到直線的距離d=$\frac{|2-a-2\sqrt{2}|}{\sqrt{2}}$=2,∴a=2,
∴圓的標(biāo)準(zhǔn)方程為(x-2)2+(y+2)2=4,
故選C.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,確定圓心坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x2-sin|x|在[-2,2]上的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.$(t為參數(shù),0≤θ<π),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=-4cosα,圓C的圓心到直線l的距離為$\frac{3}{2}$
(1)求θ的值;
(2)已知P(1,0),若直線l與圓C交于A,B兩點(diǎn),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校舉行物理競(jìng)賽,有8名男生和12名女生報(bào)名參加,將這20名學(xué)生的成績(jī)制成莖葉圖如圖所示,成績(jī)不低于80分的學(xué)生獲得“優(yōu)秀獎(jiǎng)”,其余獲“紀(jì)念獎(jiǎng)”.
(Ⅰ)求出8名男生的平均成績(jī)和12名女生成績(jī)的中位數(shù);
(Ⅱ)按照獲獎(jiǎng)?lì)愋停梅謱映闃拥姆椒◤倪@20名學(xué)生中抽取5人,再?gòu)倪x出的5人中任選3人,求恰有1人獲“優(yōu)秀獎(jiǎng)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1=1,${S_{n+1}}-{S_n}=\frac{3^n}{a_n}(n∈{N^*})$,則該數(shù)列的前2017項(xiàng)和S2017=31009-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-ax(a>0).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)如果f(x)≤0,在(0,4]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

設(shè)函數(shù),則當(dāng)時(shí),的導(dǎo)函數(shù)的極小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如表:
x
人數(shù)
y
ABC
A144010
Ba36b
C28834
若抽取學(xué)生n人,成績(jī)分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等次,設(shè)x,y分別表示數(shù)學(xué)成績(jī)與地理成績(jī),例如:表中地理成績(jī)?yōu)锳等級(jí)的共有14+40+10=64(人),數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且地理成績(jī)?yōu)镃等級(jí)的有8人.已知x與y均為A等級(jí)的概率是0.07.
(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是30%,求a,b的值;
(2)已知a≥8,b≥6,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=lnx+$\frac{1}{2}$x2+ax(x∈R),g(x)=ex+$\frac{3}{2}$x2
(Ⅰ)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對(duì)于?x>0,總有f(x)≤g(x).(i)求實(shí)數(shù)a的范圍;(ii)求證:對(duì)于?x>0,不等式ex+x2-(e+1)x+$\frac{e}{x}$>2成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案