已知定義在實數(shù)集R上的函數(shù)y=f(x)滿足條件:對于任意實數(shù)x、y都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)是奇函數(shù);
(3)若x>0時,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域.
(1)解:令x=y=0,則f(0)=f(0)+f(0),所以f(0)=0
(2)證明:令y=-x,則f(0)=f(-x)+f(x),即f(-x)=-f(x)
故f(x)為奇函數(shù);
(3)解:任取x1<x2,則x2-x1>0,故 f(x2-x1)>0
又有題設知 f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)>0
所以該函數(shù)f(x2)>f(x1)
所以該函數(shù)f(x)為(-∞,+∞)單調(diào)增函數(shù)
所以函數(shù)f(x)在[-2,1]上單調(diào)增
因為f(-1)=-2,所以f(-2)=f(-1)+f(-1)=-4,f(1)=-f(-1)=2
所以f(x)在[-2,1]上的值域為[-4,2].
分析:(1)令x=y=0,代入恒等式f(x+y)=f(x)+f(y)即可求得.
(2)令y=-x,結合(1)的結論,可得f(x)是奇函數(shù);
(3)可由定義法證明函數(shù)在[-2,1]上單調(diào)增,進而可得函數(shù)的值域.
點評:本題考查抽象函數(shù),考查賦值法的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的值域,正確賦值是關鍵.