【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
【答案】證明:(Ⅰ)連結(jié)EO,
在△PAC中,∵O是AC的中點(diǎn),E是PC的中點(diǎn),
∴OE∥AP
又∵OE平面BDE,
PA平面BDE,
∴PA∥平面BDE
(Ⅱ)∵PO底面ABCD,
∴POBD
又∵ACBD,且ACPO=O,
∴BD平面PAC.
而BD平面BDE,
∴平面PAC平面BDE。
【解析】
證明:(Ⅰ)連結(jié)EO,
在△PAC中,∵O是AC的中點(diǎn),E是PC的中點(diǎn),
∴OE∥AP.
又∵OE平面BDE,
PA平面BDE,
∴PA∥平面BDE.
(Ⅱ)∵PO底面ABCD,
∴POBD.
又∵ACBD,且ACPO=O,
∴BD平面PAC.
而BD平面BDE,
∴平面PAC平面BDE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2008奧運(yùn)會上兩名射擊運(yùn)動(dòng)員甲、乙在比賽中打出如下成績:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;用莖葉圖表示甲,乙兩個(gè)成績;并根據(jù)莖葉圖分析甲、乙兩人成績?nèi)鐖D所示,莖表示成績的整數(shù)環(huán)數(shù),葉表示小數(shù)點(diǎn)后的數(shù)字.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax﹣ ﹣5lnx,其中a∈R.
(1)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2﹣mx+4,當(dāng)a=2時(shí),若x1∈(0,1),x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
①BD⊥AC; ②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐; ④平面ADC⊥平面ABC。
其中正確的是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓x2+y2﹣12x+32=0的圓心為Q,過點(diǎn)P(0,2)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B.
(1)求k的取值范圍;
(2)是否存在常數(shù)k,使得向量 與 共線?如果存在,求k值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ (a>0)
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明: (e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,⊙O在平面內(nèi),AB是⊙O的直徑,平面,C為圓周上不同于A、B的任意一點(diǎn),M,N,Q分別是PA,PC,PB的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an﹣1﹣1(n∈N* , N≥2)
(1)求證:數(shù)列{an﹣1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan﹣n}的前n項(xiàng)和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com