【題目】已知函數(shù).
(1)求不等式的解集;
(2)如果恒成立,求實數(shù)a的取值范圍.
【答案】(1) (∞, ]∪[,+∞);(2).
【解析】試題分析:(1)零點分區(qū)間,去絕對值,分段解不等式(2)恒成立求參,變量分離,轉化為求函數(shù)最值.
(1)當x<3時,f(x)=3x+(4x)=72x
不等式f(x)2即72x2,解之得x52;
當3x4時,f(x)=x3+(4x)=1,不等式f(x)2的解集為空集;
當x>4時,f(x)=x3+(x4)=2x7,
不等式f(x)2即2x72,解之得x92
綜上所述,原不等式的解集為(∞, ]∪[,+∞);
(2)f(x) a恒成立,即f(x)的最小值a,
由(1)可得f(x)在(∞,3)上是減函數(shù),在[3.4]上是常數(shù)1,
在區(qū)間(4,+∞)上是增函數(shù)。
∴函數(shù)f(x)的最小值為1,
由此可得a1,即實數(shù)a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】為得到函數(shù)y=sin(2x+ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向右平移 長度單位
B.向左平移 個長度單位
C.向右平移個 長度單位
D.向左平移 長度單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標準型 | 300 | 450 | 600 |
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取
2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:. 把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對 值不超過的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列四個命題
①“若,則互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實根”的逆否命題;
④“不等邊三角形的三個內(nèi)角相等”的逆命題.
其中真命題為_______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m,n是兩條不同的直線,α,β是兩個不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2010年至2016年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求關于的線性回歸方程。
(2)判斷與之間是正相關還是負相關?
(3)預測該地區(qū)2018年農(nóng)村居民家庭人均純收入。
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com