【題目】如圖,有一塊半圓形的空地,政府計劃在空地上建一個矩形的市民活動廣場ABCD及矩形的停車場EFGH,剩余的地方進行綠化,其中半圓的圓心為O,半徑為r,矩形的一邊AB在直徑上,點C,D,G,H在圓周上,E,F(xiàn)在邊CD上,且∠BOG=60°,設∠BOC=

(1)記市民活動廣場及停車場的占地總面積為,求的表達式;

(2)當cos為何值時,可使市民活動廣場及停車場的占地總面積最大.

【答案】(1)(2)

【解析】

(1)由已知分別用表示兩個矩形的長和寬,可得的表達式;(2)根據(jù)(1)中的結果,求導,利用導數(shù)法分析函數(shù)的最值點,可得答案.

(1)過點于點,連接.

,

.

,

,

,

由對稱性:

.

,則為等邊三角形,

.

.

.

.

(2)由(1)得:,

,則,

,即,

.

,.

+

0

-

極大值

.

答:當時,可使市民活動廣場及停車場的占地總面積最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)fx=,其中a>0.

)若a=1,求曲線y=fx)在點(2f2))處的切線方程;

)若在區(qū)間上,fx>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cx2=2py經(jīng)過點(21).

(Ⅰ)求拋物線C的方程及其準線方程;

(Ⅱ)設O為原點,過拋物線C的焦點作斜率不為0的直線l交拋物線C于兩點M,N,直線y=1分別交直線OM,ON于點A和點B.求證:以AB為直徑的圓經(jīng)過y軸上的兩個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為矩形,平面平面,點在線段上,且平面.

1)求證:平面

2)若點是線段上靠近的三等分點,點在線段上,且平面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標方程;

(2)若直線l與曲線C交于M,N兩點,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】莆田市是福建省歷史文化名城之一,也是旅游資源豐富的城市.“九頭十八巷、二十四景美如畫.某文化傳媒公司為了解莆田民眾對當?shù)仫L景民俗知識的了解情況,在全市進行網(wǎng)上問卷(滿分100分)調查,民眾參與度極高.該公司對得分數(shù)據(jù)進行統(tǒng)計擬合,認為服從正態(tài)分布.

1)從參與調查的民眾中隨機抽取200名作為幸運者,試估算其中得分在75分以上(含75分)的人數(shù)(四舍五入精確到1人);

2)在(1)的條件下,為感謝參與民眾,該公司組織兩種活動,得分在75分以上(含75分)的幸運者選擇其中一種活動參與.活動如下:

活動一 參與一次抽獎.已知抽中價值200元的禮品的概率為,抽中價值420元的禮品的概率為;

活動二 挑戰(zhàn)一次闖關游戲.規(guī)則如下:游戲共有三關,闖關成功與否相互獨立,挑戰(zhàn)者依次闖關,第一關闖關失敗者沒有獲得禮品,第二關起闖關失敗者只能獲得上一關的禮品,獲得的禮品不累計,闖關結束.已知第一關通過的概率為,可獲得價值300元的禮品;第二關通過的概率為,可獲得價值800元的禮品;第三關通過的概率為,可獲得價值1800元的禮品.

若參與活動的幸運者均選擇禮品價值期望值較高的活動,該公司以該期望值為依據(jù),需準備多少元的禮品?

附:若,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(2-x),當x∈[-2,0]時,f(x)=,則在區(qū)間(-2,6)上關于x的方程f(x)-log8(x+2)=0的解的個數(shù)為( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案