已知向量
a
=(1,1,2)
b
=(-1,k,3)
垂直,則實(shí)數(shù)k的值為
-5
-5
分析:利用向量的垂直的充要條件列出方程,解方程求出值.
解答:解:因?yàn)?span id="xtp9fbn" class="MathJye">
a
=(1,1,2)與
b
=(-1,k,3)
垂直,
a
b
=0
,
所以-1+k+6=0,
∴k=-5.
故答案為-5.
點(diǎn)評(píng):本題考查兩個(gè)向量垂直的充要條件條件:它們的數(shù)量積為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,1)
,
b
=(2,3)
,向量λ
a
-
b
垂直于y軸,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)已知向量
 a 
=(1, 1-cosθ),  
 b 
=(1+cosθ, 
1
2
),且 
 a 
 b 
,則銳角θ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量ab不共線(xiàn),實(shí)線(xiàn)x,y滿(mǎn)足向量等式(2x-y)a+4b=5a+(x-2y)b,則x+y的值等于(    )

A.-1                 B.1               C.0                D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a = (1,1),向量b與向量a 的夾角為,且a?b = -1.

   (1)求向量b;

   (2)若向量bq =(1,0)的夾角為,向量p = ,其中A,C為△ABC的內(nèi)角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a = (1,1),向量b與向量a 的夾角為,且a?b = -1.

   (1)求向量b

   (2)若向量bq =(1,0)的夾角為,向量p = ,其中A,C為△ABC的內(nèi)角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案