【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.
【答案】
(1)證明:∵sinB(tanA+tanC)=tanAtanC
∴sinB( )=
∴sinB =
∴sinB(sinAcosC+sinCcosA)=sinAsinc
∴sinBsin(A+C)=sinAsinC,
∵A+B+C=π
∴sin(A+C)=sinB
即sin2B=sinAsinC,
由正弦定理可得:b2=ac,
所以a,b,c成等比數(shù)列.
(2)解:若a=1,c=2,則b2=ac=2,
∴ ,
∵0<B<π
∴sinB=
∴△ABC的面積
【解析】(1)由已知,利用三角函數(shù)的切化弦的原則可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用兩角和的正弦公式及三角形的內(nèi)角和公式代入可得sin2B=sinAsinC,由正弦定理可證(2)由已知結(jié)合余弦定理可求cosB,利用同角平方關(guān)系可求sinB,代入三角形的面積公式S= 可求.
【考點精析】認真審題,首先需要了解等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,是的中點,是等腰三角形,為的中點,為上一點.
(I)若平面,求;
(II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,設(shè).
(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;
(2)在中,分別為內(nèi)角的對邊,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 的圖象在點處的切線與直線平行.
(1)求的值;
(2)若函數(shù)(),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)(I)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為, .
(1)求直線與圓相切的概率;
(2)將, ,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com