【題目】已知函數(shù),其中為常數(shù).

若曲線處的切線在兩坐標(biāo)軸上的截距相等,求的值

若對,都有,求的取值范圍.

【答案】

【解析】

(1)求出切點坐標(biāo),寫出切線方程,利用切線在兩坐標(biāo)軸上的截距相等,求得a即可.

(2)對a分類討論,易判斷當(dāng)或當(dāng)時,在區(qū)間內(nèi)是單調(diào)的,根據(jù)單調(diào)性得出結(jié)論,當(dāng)時,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,,又因為,成立.的最大值為,將最大值構(gòu)造新函數(shù),通過導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后求解結(jié)果.

求導(dǎo)得,所以.

,所以曲線處的切線方程為.

由切線在兩坐標(biāo)軸上的截距相等,得,解得即為所求.

,所以區(qū)間內(nèi)單調(diào)遞減.

當(dāng)時,,所以在區(qū)間內(nèi)單調(diào)遞減,故,由恒成立,得,這與矛盾,故舍去.

當(dāng)時,,所以在區(qū)間內(nèi)單調(diào)遞增,故,即,由恒成立得,結(jié)合.

當(dāng)時,因為,且區(qū)間上單調(diào)遞減,結(jié)合零點存在定理可知,存在唯一,使得,且在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

,由恒成立知,,,所以.

的最大值為,由

所以.

設(shè),則,所以在區(qū)間內(nèi)單調(diào)遞增,于是,即.所以不等式恒成立.

綜上所述,所求的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點在軸上,且經(jīng)過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計

80

320

400

(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

(2)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

1求直線的普通方程與圓的直角坐標(biāo)方程;

2設(shè)曲線與直線交于兩點,若點的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進(jìn)行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行統(tǒng)計,樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進(jìn)一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?

2)估算該市80歲及以上長者占全市戶籍人口的百分比;

3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標(biāo)準(zhǔn)如下:

①80歲及以上長者每人每月發(fā)放生活補貼200元;

②80歲以下老人每人每月發(fā)放生活補貼120元;

③不能自理的老人每人每月額外發(fā)放生活補貼100元.

利用樣本估計總體,試估計政府執(zhí)行此計劃的年度預(yù)算.(單位:億元,結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, 的交點, 上任意一點.

1)證明:平面平面

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點, ,且,求

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售甲、乙兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,甲產(chǎn)品的利潤(萬元)與投資額(萬元)成正比,其關(guān)系如圖所示;乙產(chǎn)品的利潤(萬元)與投資額(萬元)的算術(shù)平方根成正比,其關(guān)系式如圖所示.

1)分別將甲、乙兩種產(chǎn)品的利潤表示為投資額的函數(shù);

2)若該公司投資萬元資金,并全部用于甲、乙兩種產(chǎn)品的營銷,問:怎樣分配這萬元投資,才能使公司獲得最大利潤?其最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案