【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).
【答案】(Ⅰ);(Ⅱ)線段的長(zhǎng)為2.
【解析】
試題分析:(Ⅰ)求圓的極坐標(biāo)方程,首先得知道圓的普通方程,由圓的參數(shù)方程為參數(shù)),可得圓的普通方程是,由公式,,,可得圓的極坐標(biāo)方程,值得注意的是,參數(shù)方程化極坐標(biāo)方程,必須轉(zhuǎn)化為普通方程;(Ⅱ)求線段的長(zhǎng),此問題處理方法有兩種,一轉(zhuǎn)化為普通方程,利用普通方程求出兩點(diǎn)的坐標(biāo),有兩點(diǎn)距離公式可求得線段的長(zhǎng),二利用極坐標(biāo)方程求出兩點(diǎn)的極坐標(biāo),由于,所以,所以線段的長(zhǎng)為2.
試題解析:(Ⅰ)圓的普通方程是,又;所以圓的極坐標(biāo)方程是.
(Ⅱ)設(shè)為點(diǎn)的極坐標(biāo),則有解得,設(shè)為點(diǎn)的極坐標(biāo),則有解得,由于,所以,所以線段的長(zhǎng)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點(diǎn),且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的橢圓: ()的左右焦點(diǎn)分別為、, 為橢圓上的任意一點(diǎn),且, , 成等差數(shù)列.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線: 交橢圓于, 兩點(diǎn),若點(diǎn)始終在以為直徑的圓外,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)( )引直線l與曲線y= 相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),直線l的斜率等于( )
A.
B.-
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,若,,成等差數(shù)列,且三個(gè)內(nèi)角,,也成等差數(shù)列,則的形狀為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,點(diǎn)E是AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若關(guān)系式中變量是變量的函數(shù),則稱函數(shù)為可變換函數(shù).例如:對(duì)于函數(shù),若,則,所以變量是變量的函數(shù),所以是可變換函數(shù).
(1)求證:反比例函數(shù)不是可變換函數(shù);
(2)試判斷函數(shù)是否是可變換函數(shù)并說明理由;
(3)若函數(shù)為可變換函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com