【題目】已知函數(shù),.

(Ⅰ),過(guò)原點(diǎn)作曲線(xiàn)的切線(xiàn),求直線(xiàn)的方程;

(Ⅱ)個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)題意對(duì)函數(shù)求導(dǎo),設(shè)出切點(diǎn),將過(guò)原點(diǎn)的切線(xiàn)方程寫(xiě)出,從而解出切點(diǎn)坐標(biāo),代入切線(xiàn)方程即可;(2)3個(gè)零點(diǎn)轉(zhuǎn)化為有三個(gè)不同的交點(diǎn),眼界的單調(diào)性,畫(huà)出大致圖像,得到交點(diǎn)個(gè)數(shù),進(jìn)而得到參數(shù)范圍。

解析:

(Ⅰ)可知.又因,故.

所以.設(shè)切點(diǎn),切線(xiàn)斜率,則切線(xiàn)方程,由切線(xiàn)過(guò),

,解得,

當(dāng),切線(xiàn),切線(xiàn)方程,

當(dāng),切點(diǎn),切線(xiàn),切線(xiàn)方程

直線(xiàn)的方程.

(Ⅱ)有3個(gè)零點(diǎn)轉(zhuǎn)化為

有三個(gè)不同的交點(diǎn),

,解得. 易知為極大值

點(diǎn),為極小值點(diǎn). 則當(dāng)取極大值0,

當(dāng)時(shí),取極小值. 結(jié)合函數(shù)圖象可知,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C:ρ2﹣4ρcosθ+1=0,直線(xiàn)l: (t為參數(shù),0≤α<π).
(1)求曲線(xiàn)C的參數(shù)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相切,求直線(xiàn)l的傾斜角及切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品按質(zhì)量分10個(gè)檔次,生產(chǎn)最低檔次的利潤(rùn)是8/件;每提高一個(gè)檔次,利潤(rùn)每件增加2元,每提高一個(gè)檔次,產(chǎn)量減少3件,在相同時(shí)間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件.問(wèn):在相同時(shí)間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品可獲得最大利潤(rùn)?(最低檔次為第一檔次)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,ADCD,ABCD,AB=AD=CD=2,點(diǎn)M是線(xiàn)段EC的中點(diǎn).

(1)求證:BM平面ADEF;

(2)求證:平面BDE平面BEC;

(3)求平面BDM與平面ABF所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點(diǎn)G為棱A1B1上任意一點(diǎn),則直線(xiàn)AE與直線(xiàn)FG所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在鈍角△ABC中,∠A為鈍角,令,若.現(xiàn)給出下面結(jié)論:

①當(dāng)時(shí),點(diǎn)D是△ABC的重心;

②記△ABD,△ACD的面積分別為,當(dāng)時(shí),

③若點(diǎn)D在△ABC內(nèi)部(不含邊界),則的取值范圍是;

④若點(diǎn)D在線(xiàn)段BC上(不在端點(diǎn)),則

⑤若,其中點(diǎn)E在直線(xiàn)BC上,則當(dāng)時(shí),

其中正確的有(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲線(xiàn)f(x)在x=2處的切線(xiàn)方程;
(Ⅱ)若當(dāng)x≥2時(shí),f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,

(1)求多面體ABCDS的體積;
(2)求二面角A﹣SB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓.

(1)求證兩圓相交;

(2)求兩圓公共弦所在直線(xiàn)的方程;

(3)求過(guò)兩圓的交點(diǎn)且圓心在直線(xiàn)上的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案