【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn) 分別是Δ 的邊 的中點(diǎn),連接 .現(xiàn)將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .
(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的兩個焦點(diǎn)分別為 , ,且經(jīng)過點(diǎn) .
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ) 的頂點(diǎn)都在橢圓 上,其中 關(guān)于原點(diǎn)對稱,試問 能否為正三角形?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn) 的直線 與圓 相交于 兩點(diǎn), 是 的中點(diǎn), .
(1)求圓 的標(biāo)準(zhǔn)方程;
(2)求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)A,B分別在曲線C1 , C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合…,…,,對于…,,B=(…,,定義A與B的差為
…,A與B之間的距離為.
(Ⅰ)若,求;
(Ⅱ)證明:對任意,有
(i),且;
(ii)三個數(shù)中至少有一個是偶數(shù);
(Ⅲ)對于……,再定義一種A與B之間的運(yùn)算,并寫出兩條該運(yùn)算滿足的性質(zhì)(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項a7和通項公式an;
(2)若數(shù)列{bn}的通項bn=an+an+1,{bn}的前n項和Sn,寫出使得Sn小于55時所有可能的bn的取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com