已知集合A={x|0≤x≤8},B={x|x<6},則(CRB)∪A=
[0,+∞)
[0,+∞)
分析:找出全集R中不屬于B的部分求出B的補集,找出既屬于B補集又屬于A的部分,即可確定出所求的集合.
解答:解:∵全集為R,B={x|x<6},
∴CRB={x|x≥6}=[6,+∞),
又A={x|0≤x≤8}=[0,8],
則(CRB)∪A=[0,+∞).
故答案為:[0,+∞)
點評:此題考查了交、并、補集的混合運算,熟練掌握交、并、補集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<ax+1≤5},集合B={x|-
12
<x≤2}

(1)若A⊆B,求實數(shù)a的取值范圍;
(2)若B⊆A,求實數(shù)a的取值范圍;
(3)A、B能否相等.若存在,求出這樣的實數(shù)a,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0≤2x-1≤3},集合B={x|x=sint},t∈R,則A∩B為( 。
A、{x|
1
2
≤x≤1}
B、{x|-1≤x≤1}
C、{x|
1
2
≤x≤2}
D、{x|-
1
2
≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0≤x<3,x∈Z},則集合A的子集的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知集合A={0,1,2},B={x∈Z|-1<x<2},求A∪B
(2)已知集合A={x|0≤x≤2},B={x|-1<x<2},求A∩B.

查看答案和解析>>

同步練習冊答案