【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1 , n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:由已知得

解得a2=2.

設(shè)數(shù)列{an}的公比為q,由a2=2,

可得

又S3=7,可知

即2q2﹣5q+2=0,

解得

由題意得q>1,

∴q=2,

∴a1=1.故數(shù)列{an}的通項(xiàng)為an=2n1


(2)解:由于bn=lna3n+1,n=1,2,

由(1)得a3n+1=23n,

∴bn=ln23n=3nln2,又bn+1﹣bn=3ln2,

∴{bn}是等差數(shù)列.

∴Tn=b1+b2++bn

=

=

=


【解析】(1)由{an}是公比大于1的等比數(shù)列,S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列,我們不難構(gòu)造方程組,解方程組即可求出相關(guān)基本量,進(jìn)而給出數(shù)列{an}的通項(xiàng)公式.(2)由bn=lna3n+1 , n=1,2,…,我們易給出數(shù)列{bn}的通項(xiàng)公式,分析后可得:數(shù)列{bn}是一個(gè)等差數(shù)列,代入等差數(shù)列前n項(xiàng)和公式即可求出Tn
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求在區(qū)間上零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,若對(duì)于任意的,都有,且時(shí),有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種設(shè)備的單價(jià)為,設(shè)備維修和消耗費(fèi)用第一年為,以后每年增加是常數(shù).用表示設(shè)備使用的年數(shù),記設(shè)備年平均費(fèi)用為, (設(shè)備單價(jià)設(shè)備維修和消耗費(fèi)用)設(shè)備使用的年數(shù).

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)當(dāng), 時(shí),求這種設(shè)備的最佳更新年限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知
(1)請(qǐng)寫(xiě)出fn(x)的表達(dá)式(不需證明);
(2)設(shè)fn(x)的極小值點(diǎn)為Pn(xn , yn),求yn
(3)設(shè) ,gn(x)的最大值為a,fn(x)的最小值為b,求b﹣a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱椎中,底面為菱形, 的中點(diǎn).

(1)求證: 平面;

(2)若底面, , ,求三棱椎的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案