【題目】設(shè)為不同的兩點,直線,下列命題正確的有( ).

①不論為何值,點都不在直線上;

②若,則過點的直線與直線平行;

③若,則直線經(jīng)過的中點;

④若,則點在直線的同側(cè)且直線與線段的延長線相交.

A.1B.2C.3D.4

【答案】D

【解析】

可得①正確,分兩種情況討論可得直線與直線平行,可得②正確,當(dāng)時,可得到,從而得到③正確,當(dāng)時可得,然后可得④正確.

因為中,,所以點不在直線上,故①正確

當(dāng)時,根據(jù)得到,化簡得

即直線的斜率為,又直線的斜率為,由①可知點不在直線上,

得到直線與直線平行

當(dāng)時,可得直線與直線的斜率都不存在,也滿足平行,故②正確

當(dāng)時,得到,化簡得

而線段的中點坐標(biāo)為,所以直線經(jīng)過的中點,故③正確

當(dāng)時,得到,所以,

,所以點在直線的同側(cè)

,可得點與點到直線的距離不等,

所以延長線與直線相交,故④正確

綜上:命題正確的有4個

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

1)焦點在x軸上,實軸長10,虛軸長8.

2)焦點在y軸上,焦距是10,虛軸長8.

3)離心率,經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地種植常規(guī)稻A和雜交稻B,常規(guī)稻A的畝產(chǎn)穩(wěn)定為500公斤,今年單價為3.50元/公斤,估計明年單價不變的可能性為10%,變?yōu)?.60元/公斤的可能性為60%,變?yōu)?.70元/公斤的可能性為30%.統(tǒng)計雜交稻B的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如下;統(tǒng)計近10年來雜交稻B的單價(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點圖如下,參考數(shù)據(jù)見下.

(1)估計明年常規(guī)稻A的單價平均值;

(2)在頻率分布直方圖中,各組的取值按中間值來計算,求雜交稻B的畝產(chǎn)平均值;以頻率作為概率,預(yù)計將來三年中至少有二年,雜交稻B的畝產(chǎn)超過765公斤的概率;

(3)判斷雜交稻B的單價y(單位:元/公斤)與種植畝數(shù)x(單位:萬畝)是否線性相關(guān)?若相關(guān),試根據(jù)以下的參考數(shù)據(jù)求出y關(guān)于x的線性回歸方程;調(diào)查得知明年此地雜交稻B的種植畝數(shù)預(yù)計為2萬畝.若在常規(guī)稻A和雜交稻B中選擇,明年種植哪種水稻收入更高?

統(tǒng)計參考數(shù)據(jù):,,

附:線性回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級100名學(xué)生中進行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占70%.這100名學(xué)生中南方學(xué)生共80人.南方學(xué)生中有20人不喜歡甜品.

1)完成下列列聯(lián)表:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

北方學(xué)生

合計

2)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異;

3)已知在被調(diào)查的南方學(xué)生中有6名數(shù)學(xué)系的學(xué)生,其中2名不喜歡甜品;有5名物理系的學(xué)生,其中1名不喜歡甜品.現(xiàn)從這兩個系的學(xué)生中,各隨機抽取2人,記抽出的4人中不喜歡甜品的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個交點,經(jīng)過這三個交點的圓記為C.求:

)求實數(shù)b 的取值范圍;

)求圓C 的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形,分別是的中點,設(shè),

1)證明:;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知與曲線相切的直線,與軸, 軸交于兩點, 為原點, , ,( .

1)求證: 相切的條件是: .

2)求線段中點的軌跡方程;

3)求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棋盤的每個方格都隨意染黑白兩色之一,每次操作是將其中同行、同列、同對角線的連續(xù)五個方格改變成相反的顏色.試問:能否經(jīng)過有限次操作,使得所有方格的顏色都變成與原先相反的顏色?

查看答案和解析>>

同步練習(xí)冊答案