【題目】半正多面體(semiregular solid)亦稱阿基米德多面體,如圖所示,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.將正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個(gè)三棱錐,如此共可截去八個(gè)三棱錐,得到一個(gè)有十四個(gè)面的半正多面體,它們的邊長(zhǎng)都相等,其中八個(gè)為正三角形,六個(gè)為正方形,稱這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長(zhǎng)為,則該二十四等邊體外接球的表面積為(

A.B.C.D.

【答案】C

【解析】

由已知根據(jù)該幾何體的對(duì)稱性可知,該幾何體的外接球即為底面棱長(zhǎng)為,側(cè)棱長(zhǎng)為的正四棱柱的外接球,利用勾股定理得到關(guān)于的方程,解得值再代入球的面積公式.

由已知根據(jù)該幾何體的對(duì)稱性可知,該幾何體的外接球即為底面棱長(zhǎng)為,側(cè)棱長(zhǎng)為的正四棱柱的外接球,

,,

該二十四等邊體的外接球的表面積.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過原點(diǎn)且斜率為1的直線交橢圓兩點(diǎn),四邊形的周長(zhǎng)與面積分別為12.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與圓相切,且與橢圓交于兩點(diǎn),求原點(diǎn)到的中垂線的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列項(xiàng)和為,且滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列項(xiàng)和;

(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類意識(shí)強(qiáng)

分類意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;

參考公式:,其中.

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為為上頂點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn).

1)若,求直線軸的交點(diǎn)坐標(biāo);

2)設(shè)為橢圓的右焦點(diǎn),過點(diǎn)軸垂直的直線為,的中點(diǎn)為,過點(diǎn)作直線的垂線,垂足為,求證:直線與直線的交點(diǎn)在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對(duì)年產(chǎn)能(單位:千萬元)的影響,對(duì)投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點(diǎn)圖和統(tǒng)計(jì)量表.

1)根據(jù)散點(diǎn)圖判斷:哪一個(gè)適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型?并說明理由?

2)根據(jù)(1)的判斷結(jié)果及相關(guān)的計(jì)算數(shù)據(jù),建立關(guān)于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達(dá)到最大值,則下一年度共需投入多少資金(單位:千萬元)?

附注:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為(說明:的導(dǎo)函數(shù)為)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖是某市121-20AQI指數(shù)變化趨勢(shì):

下列敘述正確的是(

A.20天中AQI指數(shù)值的中位數(shù)略高于100

B.20天中的中度污染及以上的天數(shù)占

C.該市12月的前半個(gè)月的空氣質(zhì)量越來越好

D.總體來說,該市12月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:

(1)四面體EBCD的體積有最大值和最小值;

(2)存在某個(gè)位置,使得

(3)設(shè)二面角的平面角為,則;

(4)AE的中點(diǎn)MAB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.

其中,正確說法的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):

若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)?/span>優(yōu)秀”.

1)從這20人中任取3人,求恰有1人成績(jī)優(yōu)秀的概率;

2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.

組別

分組

頻數(shù)

頻率

1

2

3

4

①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)?/span>優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案