【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)為

)若直線(xiàn)的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

【答案】(1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2

【解析】試題分析:1)求得的導(dǎo)數(shù),可得切線(xiàn)的斜率,由條件可得,由導(dǎo)數(shù)大于0,可得增區(qū)間,由導(dǎo)數(shù)小于0,可得減區(qū)間;(2)由題意可得當(dāng)函數(shù)在遞增(或遞減),即有)對(duì)成立,只要上的最小值(或最大值)大于等于0即可.求出二次函數(shù)的對(duì)稱(chēng)軸,討論區(qū)間和對(duì)稱(chēng)軸的關(guān)系,求得最小值(或最大值),解不等式即可得到所求范圍.

試題解析:)由

若曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為,

,

,

,得;

,得,

∴函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

①當(dāng)函數(shù)在區(qū)間上單調(diào)遞減時(shí), 對(duì)成立,

對(duì)成立,

根據(jù)二次函數(shù)的性質(zhì),只需要,

解得,

,所以;

②當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時(shí), 對(duì)成立,

只需上的最小值大于等于即可,

函數(shù)的對(duì)稱(chēng)軸為,

當(dāng)時(shí), 上的最小值為,

,解得,

此種情形不成立;

當(dāng)時(shí), 上的最小值為,

,解得

綜上所述,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)R上的單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;

2)設(shè) 的導(dǎo)函數(shù).

①若對(duì)任意的,求證:存在使;

②若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 ()的一個(gè)焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司想了解對(duì)某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營(yíng)業(yè)額的影響.下面是以往公司對(duì)該產(chǎn)品的宣傳費(fèi)用 (單位:萬(wàn)元)和產(chǎn)品營(yíng)業(yè)額 (單位:萬(wàn)元)的統(tǒng)計(jì)折線(xiàn)圖.

(Ⅰ)根據(jù)折線(xiàn)圖可以判斷,可用線(xiàn)性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營(yíng)業(yè)額的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(Ⅱ)建立產(chǎn)品營(yíng)業(yè)額關(guān)于宣傳費(fèi)用的歸方程;

(Ⅲ)若某段時(shí)間內(nèi)產(chǎn)品利潤(rùn)與宣傳費(fèi)和營(yíng)業(yè)額的關(guān)系為,應(yīng)投入宣傳費(fèi)多少萬(wàn)元才能使利潤(rùn)最大,并求最大利潤(rùn).

參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù), ,

回歸方程中斜率和截距的最小二乘佔(zhàn)計(jì)公式分別為 .(計(jì)算結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿(mǎn)意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿(mǎn)意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓上的動(dòng)點(diǎn)T滿(mǎn)足:線(xiàn)段TQ的垂直平分線(xiàn)與線(xiàn)段TP相交于點(diǎn)K

求點(diǎn)K的軌跡C的方程;

經(jīng)過(guò)點(diǎn)的斜率之積為的兩條直線(xiàn),分別與曲線(xiàn)C相交于MN兩點(diǎn),試判斷直線(xiàn)MN是否經(jīng)過(guò)定點(diǎn)若是,則求出定點(diǎn)坐標(biāo);若否,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中, , 的中點(diǎn), 的中點(diǎn).將沿折起到,使得平面平面(如圖).

圖1 圖2

(Ⅰ)求證: ;

(Ⅱ)求直線(xiàn)與平面所成角的正弦值;

(Ⅲ)在線(xiàn)段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)袋中有個(gè)大小之地都相同的小球,其中紅球個(gè),白球個(gè),黑球個(gè),現(xiàn)從袋中有放回的取球,每次隨機(jī)取一個(gè),連續(xù)取兩次.

1)設(shè)表示先后兩次所取到的球,試寫(xiě)出所有可能抽取結(jié)果;

2)求連續(xù)兩次都取到白球的概率;

3)若取到紅球記分,取到白球記分,取到黑球記分,求連續(xù)兩次球所得總分?jǐn)?shù)大于分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案