【題目】已知橢圓的焦點(diǎn)為,過的直線交,兩點(diǎn),過作與軸垂直的直線交直線于點(diǎn).設(shè),已知當(dāng)時(shí),

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:無論如何變化,直線過定點(diǎn).

【答案】(Ⅰ);(Ⅱ)詳見解析.

【解析】

(Ⅰ)根據(jù)橢圓定義和線段長(zhǎng)度關(guān)系可知軸上,由此求得,代入橢圓方程即可求得,進(jìn)而得到橢圓方程;

(Ⅱ)將直線代入橢圓方程可得韋達(dá)定理的形式,從而得到,從而化簡(jiǎn)得到直線的斜率,得到方程為,從而得到定點(diǎn).

(Ⅰ)設(shè)橢圓方程為,其中,

時(shí),不妨設(shè),則

,,由橢圓定義得:,,

故此時(shí)點(diǎn)軸上,不妨設(shè),則,

代入橢圓方程,解得:,,

故所求橢圓方程為

(Ⅱ)直線過定點(diǎn),證明如下:

設(shè)直線方程為:

代入橢圓中得:,即

設(shè),,

,,

由題設(shè)知:,直線斜率:,

直線方程為,化簡(jiǎn)得:,故直線恒過

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與圓相交于兩點(diǎn),當(dāng)的面積達(dá)到最大時(shí),________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且其離心率為,過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).

1)求橢圓的方程;

2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,它的體積是底面△ABC中,∠BAC=90°,AB=4,AC=3在底面的射影是D,且DBC的中點(diǎn).

(1)求側(cè)棱與底面ABC所成角的大小;

(2)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)運(yùn)動(dòng)計(jì)步已成為一種時(shí)尚,某中學(xué)統(tǒng)計(jì)了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

(Ⅰ)求直方圖中的值,并由頻率分布直方圖估計(jì)該校教職工一天步行數(shù)的中位數(shù);

(Ⅱ)若該校有教職工175人,試估計(jì)一天行走步數(shù)不大于130百步的人數(shù);

(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若的極大值點(diǎn),求的取值范圍;

(2)當(dāng),時(shí),方程(其中)有唯一實(shí)數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,,軸上關(guān)于原點(diǎn)對(duì)稱的兩定點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線

1)求的方程;

2)過的直線與交于點(diǎn),線段的中點(diǎn)為,的中垂線分別與軸、軸交于點(diǎn),問是否成立?若成立,求出直線的方程;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)若,求函數(shù)的極值和單調(diào)區(qū)間;

II)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)列中的每一項(xiàng)均在集合中,且任意兩項(xiàng)不相等,又對(duì)于任意的整數(shù),均有.例如時(shí),數(shù)列

1)當(dāng)時(shí),試求滿足條件的數(shù)列的個(gè)數(shù);

2)當(dāng),求所有滿足條件的數(shù)列的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案